Skip to main content Accessibility help

Tracer diffusion of Ba and Y in YBa2Cu3Ox

  • Nan Chen (a1), S.J. Rothman (a1), J.L. Routbort (a1) and K.C. Goretta (a2)


Tracer self-diffusion of Ba and Y and the diffusion of Dy, Ho, and Gd, which substitute for Y, have been measured in polycrystalline YBa2Cu3Ox over temperature and oxygen partial pressure ranges of 850 to 980 °C and 103 to 105 Pa, respectively. The diffusion of Ba is slower than that of oxygen or copper, with a high activation energy of about 890 ± 80 kJ/mole. Large anisotropy has also been observed, with diffusion along the c-axis being more than three orders of magnitude slower than diffusion in randomly oriented polycrystals. Diffusion coefficients of Ba were, within experimental uncertainty, independent of oxygen partial pressure over the range measured. The diffusion coefficients of the Y-site species were nearly identical and an activation energy of about 1.0 MJ/mole was estimated, in agreement with that for high-temperature deformation. Attempts to speed up the kinetics through creation of point defects on the Y site by doping proved to be unsuccessful. These results are compared to cation diffusion in cubic perovskites and simple oxides.



Hide All
1.Rothman, S. J., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989).
2.Rothman, S. J., Routbort, J. L., Welp, U., and Baker, J. E., Phys. Rev. B 44, 2326 (1991).
3.Tu, K. N., Park, S. I., and Tsuei, C. C., Appl. Phys. Lett. 51, 2158 (1987).
4.Tu, K. N., Yeh, N. C., Park, S. I., and Tsuei, C. C., Phys. Rev. B 39, 304 (1989).
5.Matsui, T., Naito, K., and Hagino, S., Non-Stoichiometric Compounds–Surface Grain Boundaries and Structural Defects, edited by Nowotny, J. and Weppner, W. (Kluwer Acad. Pub., Dordrecht, Germany, 1989), p. 471.
6.Turrillas, X., Kilner, J. A., Kontoulis, I., and Steele, B. C. H., J. Less-Common Met. 151, 229 (1989).
7.Maier, J., Murugaraj, P., Pfundtner, G., and Sitte, W., Ber. Bunsenges Phys. Chem. 93, 1350 (1989).
8.Sabras, J., Peraudeau, G., Rejoan, R., and Monty, C., J. Less-Common Met. 165–164, 239 (1990).
9.Tallon, J.L. and Staines, M.P., J. Appl. Phys. 68, 3990 (1990).
10.Gupta, D., Laibowitz, R. B., and Lacey, J. A., Phys. Rev. Lett. 64, 2675 (1990).
11.Gupta, D., Shinde, S. L., and Laibowitz, R. B., in High Temperature Superconducting Compounds II, edited by Whang, S. H., Gupta, A. Das, and Laibowitz, R. B. (TMS, Warrendale, PA, 1990), p. 377.
12.Chen, N., Rothman, S. J., and Routbort, J. L., J. Appl. Phys. 68, 2523 (1990).
13.Routbort, J.L., Rothman, S. J., Chen, N., Mundy, J. N., and Baker, J. E., Phys. Rev. B 43, 5489 (1991).
14.Chen, N., Ph.D. Thesis, Illinois Institute of Technology, 1991.
15.Rothman, S. J., Chen, N., and Routbort, J. L., in High Temperature Superconducting Compounds III, edited by Whang, S. H., Gupta, A. Das, and Collings, E. (TMS, Warrendale, PA, 1991), p. 399.
16.Zhang, K., Dabrowski, B., Segre, C. U., Hinks, D. G., Schuller, I. K., Jorgensen, J. D., and Slaski, M., J. Phys. C 20, L935 (1987).
17.Page, Y. Le, Siegrist, T., Sunshine, S. A., Schneemeyer, L. F., Murphy, D. W., Zahurak, S. M., Waszczak, J. V., Mckinnon, W. R., Tarascon, J. M., Hull, G. W., and Greene, L. H., Phys. Rev. B 36, 3617 (1987).
18.Reyes-Morel, P. E., Wu, X., and Chen, I-W., in Ceramic Superconductors II, edited by Yan, M. F. (Am. Ceram. Soc, Westerville, OH, 1988), p. 590.
19.Goretta, K.C., Routbort, J.L., Biondo, A.C., Gao, Y., de Arellano-López, A.R., and Domínguez-Rodríguez, A., J. Mater. Res. 5, 2766 (1990).
20.Burke, T. G. and Lagerlof, K. P. D., Presented at the 93rd Annual Meeting of the American Ceramic Society, Cincinnati, OH, May 1, 1991. Arellano-López, A. R., Goretta, K. C., Routbort, J. L., Miller, D. J., and Domínguez-Rodríguez, A., Ceram. Acta 3, 5 (1991).
22.Routbort, J.L., Goretta, K. C., Miller, D. J., Kazelas, D. E., Clauss, C., and Domínguez-Rodríguez, A., J. Mater. Res. 7, 2360 (1992).
23.Shi, D., Goretta, K. C., Biondo, A. C., and Chen, J. G., Ceram. Trans. 18, 373 (1991).
24.Mundy, J.N. and Rothman, S. J., J. Vac. Technol. 1, 74 (1983).
25.Crank, J., The Mathematics of Diffusion (Oxford University Press, London, 1956).
26.SAS Users' Guide, Statistics (SAS Institute, Cary, NC, 1985), p. 575.
27.Goretta, K. C., Poeppel, R. B., Shi, D., Chen, N., Rothman, S. J., Routbort, J. L., and Stoessel, J. P., Ceram. Trans. 13, 369 (1990).
28.Cannon, W. R. and Langdon, T. G., J. Mater. Sci. 18, 1 (1983).
29.Nowotny, J., Rekas, M., and Weppner, W., J. Am. Ceram. Soc. 73, 1040 (1990).
30.Baetzold, R. C., Physica C 181, 252 (1991).
31.Baetzold, R. C., private communication (1992).
32.Zhao, Y., Liu, H. K., and Dou, S. X., Physica C 179, 207 (1991).
33.Andreas, M.T. and Kingon, A.I., Chem. Mater. 3, 428 (1991).
34.Jírak, Z., Hejmánek, J., Pollert, E., Tríska, A., and Vasek, P., Physica C 156, 750 (1988).
35.Tokiwa, A., Syono, Y., Kikuchi, M., Suzuki, R., Kajitani, T., Kobayashi, N., Sasaki, T., Nakatsu, O., and Muto, Y., Jpn. J. Appl. Phys. 27, L1009 (1988).
36.Chandrachood, M. R., Mulla, I. S., Gorwadkar, S. M., and Sinha, A. P. B., Appl. Phys. Lett. 56, 183 (1990).
37.Poddar, A., Mandal, P., Choudhury, P., Das, A. N., and Ghosh, B., J. Phys. C 21, 3323 (1988).
38.Régnier, P., Gupta, R. P., and Truchot, P., J. Phys. C 21, L463 (1988).
39.Berard, M. F. and Wilder, D. R., J. Am. Ceram. Soc. 52, 85 (1969).
40.Jorgensen, J.D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., and Schuller, Ivan K., Phys. Rev. B 36, 3608 (1987).
41.Verduch, A.G. and Lindner, R., Arkiv. Kemi. 5, 313 (1953).
42.Shimanovich, I. E., Pavlyuchenko, M. M., Filinov, B. O., and Prokudina, S. A, Vestni. Akad. Nauk. BSSR Ser. Kim. Nauk. 6, 61 (1969).
43.Turlier, P., Brassiére, P., and Prettre, M., Compt. Rend. Acad. Sci. Paris 250, 1649 (1960).
44.Pavlyuchenko, M. M., Filonov, B. O., Shimanovich, I. E., and Prokudina, S. A., Dokl. Akad. Nauk. BSSR 24, 328 (1970).
45.Lyubimov, A. P., Kalashnikov, A. A., and Nuriddinov, B., Dokl. Akad. Nauk. 29, 24 (1972).
46. Melting points for the cubic perovskites were obtained from Phase Diagrams for Ceramists (Am. Ceram. Soc, Westerville, OH, 1983), Vol. I-V.
47.Murarka, S.P. and Swalin, R.A., J. Phys. Chem. Sol. 32, 2015 (1971).
48.Zollweg, R.J., Phys. Rev. 100, 671 (1955).
49.Santoro, A., Miraglia, S., Beech, F., Sunshine, S. A., Murphy, D. W., Schneemeyer, L. F., and Waszczak, J. V., Mater. Res. Bull. XXII, 1007 (1987).
50.Kristallogr, Z.., u., MineralPetrogr. Abt. A 2, 38 (1937).
51.Chen, N., Shi, D., and Goretta, K. C., J. Appl. Phys. 66, 2485 (1989).

Tracer diffusion of Ba and Y in YBa2Cu3Ox

  • Nan Chen (a1), S.J. Rothman (a1), J.L. Routbort (a1) and K.C. Goretta (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed