Skip to main content Accessibility help

Towards an integrated materials characterization toolbox

  • Ian M. Robertson (a1), Christopher A. Schuh (a2), John S. Vetrano (a3), Nigel D. Browning (a4), David P. Field (a5), Dorte Juul Jensen (a6), Michael K. Miller (a7), Ian Baker (a8), David C. Dunand (a9), Rafal Dunin-Borkowski (a10), Bernd Kabius (a11), Tom Kelly (a12), Sergio Lozano-Perez (a13), Amit Misra (a14), Gregory S. Rohrer (a15), Anthony D. Rollett (a15), Mitra L. Taheri (a16), Greg B. Thompson (a17), Michael Uchic (a18), Xun-Li Wang (a19) and Gary Was (a20)...


The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across spatial and temporal space simultaneously. This will provide insight to reaction dynamics in four-dimensions, spanning multiple orders of magnitude in both temporal and spatial space. This study presents the authors’ viewpoint on the material characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom probe tomography; x-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Advances in surface probe microscopy have been reviewed recently and, therefore, are not included [D.A. Bonnell et al.: Rev. Modern Phys. in Review]. In this study particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving material damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Towards an integrated materials characterization toolbox
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Towards an integrated materials characterization toolbox
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Towards an integrated materials characterization toolbox
      Available formats


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Lund, A.C. and Voorhees, P.W.: A quantitative assessment of the three-dimensional microstructure of γ-γ’ alloy. Philos. Mag. 83, 1719 (2003).
2.Mendoza, R., Alkemper, J., and Voorhees, P.W.: The morphological evolution of dendritic microstructures during coarsening. Metall. Mater. Trans. A 34, 481 (2003).
3.Inkson, B.J., Olsen, S., Norris, D.J., O’Neill, A.G., and Möbus, G.: 3D determination of a MOSFET gate morphology by FIB tomography. Des. Nat. 6, 611 (2004).
4.Larson, B.C., Wang, W., Ice, G.E., Budai, J.D., and Tischler, J.Z.: Three dimensional x-ray structural microscopy with submicrometre resolution. Nature 415, 887 (2002).
5.Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Margulies, L., Lorentzen, T., and Jensen, D.J.: Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Cryst. 34, 751 (2001).
6.Suter, R.M., Hefferan, C.M., Li, S.F., Hennessy, D., Xiao, C., Lienert, U. and Tieman, B.: Probing microstructure dynamics with x-ray diffraction microscopy. J. Eng. Mater. Trans. ASME, 130, 021007–1 (2008).
7.King, A., Johnson, G., Engelberg, D., Ludwig, W., and Marrow, J.: Observations of intergranular stress-corrosion cracking in a grain-mapped polycrystal. Science 321, 382 (2008).
8.Uchic, M.D., Groeber, M.A., Dimiduk, D.M., and Simmons, J.P.: 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55, 23 (2006).
9.Mulders, J.J.L. and Day, A.P.: Three-dimensional texture analysis. Mater. Sci. Forum 495497, 237 (2005).
10.Groeber, M.A., Haley, B.K., Uchic, M.D., Dimiduk, D.M., and Ghosh, S.: 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater. Charact. 57, 259 (2006).
11.Alkemper, J. and Voorhees, P.W.: Quantitative serial sectioning analysis. J. Microsc. 201, 388 (2001).
12.Spowart, J.E.: Automated serial sectioning for 3-D analysis of microstructures. Scr. Mater. 55, 5 (2006).
13.Viewpoint set on 3D characterization and analysis of materials, Guest editor: G. Spanos: Scr. Mater. 55 (2006).
14.Wilkinson, A.J., Clarke, E.E., Britton, T.B., Littlewood, P., and Karamched, P.S.: High-resolution electron backscatter diffraction: An emerging tool for studying local deformation. J. Strain Anal. Eng. Des. 45, 365 (2010).
15.Wilkinson, A.J., Meaden, G., and Dingley, D.J.: High resolution mapping of strains and rotations using electron backscatter diffraction. Mater. Sci. Technol. 22, 1271 (2006).
16.Wilkinson, A.J., Meaden, G., and Dingley, D.J.: High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 106, 307 (2006).
17.Poulsen, H.F.: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics (Springer-Verlag, Berlin Heidelberg, 2004).
18.Ice, G.E. and Larson, B.C.: 3D x-ray crystal microscope. Adv. Eng. Mater. 2, 643 (2000).
19.Liu, W.J., Ice, G.E., Larson, B.C., Yang, W.G., Tischler, J.Z., and Budai, J.D.: The three-dimensional x-ray crystal microscope: A new tool for materials characterization. Metall. Mater. Trans. A 35A, 1963 (2004).
20.McEwen, B.F., Renken, C., Marko, M., Mannella, C.: Principles and practice in electron tomography. Methods Cell Biol. 89, 129, (2008).
21.Midgley, P.A. and Dunin-Borkowski, R.E.: Electron tomography and holography in materials science. Nat. Mater. 8, 271 (2009).
22.Ferreira, P., Stach, E.A., and Mitsuishi, K.: In situ transmission electron microscopy. MRS Bull. 33, 93 (2008).
23.Hetherington, C.: Aberration correction for TEM. Mater. Today 7, 50 (2004).
24.Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., and Woodruff, J.W.: An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2008).
25.Rose, H.: Aberration correction in electron microscopy. Int. J. Mater. Res. 97, 885 (2006).
26.Zhu, Y. and Wall, J.: Aberration-corrected electron microscopes at Brookhaven Microscopes at Brookhaven National Laboratory. Advances in Imaging and Electron Physics 153, 481 (2008).
27.The Otto Scherzer special issue on aberration-corrected electron microscopy. Guest editors: Smith, D.J. and Dahmen, U.: Microsc. Microanal. 16, (2010).
28.Chergui, M. and Zewail, A.H.: Electron and x-ray methods of ultrafast structural dynamics: Advances and applications. ChemPhysChem. 10, 28 (2009).
29.Reed, B.W., Armstrong, M.R., Browning, N.D., Campbell, G.H., Evans, J.E., LaGrange, T., and Masiel, D.J.: The evolution of ultrafast electron microscope instrumentation. Microsc. Microanal. 15, 272 (2009).
30.Kelly, T.F. and Miller, M.K.: Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).
31.Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000).
32.Clark, B.G., Ferreira, P., and Robertson, I.M.: Microsc. Res. Tech. 72, 121–292 (2009).
33.In-Situ Electron Microscopy of Materials, edited by Ferreira, P. J., Robertson, I.M., Dehm, G., and Saka, H. (Mater. Res. Soc. Symp. Proc. 907E, Warrendale, PA, 2006).
34.Meisenkothen, F., Wheeler, R., Uchic, M.D., Kerns, R.D., and Scheltens, F.J.: Electron channeling: A problem for x-ray microanalysis in materials science. Microsc. Microanal. 15, 83 (2009).
35.Uchic, M.D.: 3D microstructural characterization: Methods, analysis, and applications. JOM 58, 24 (2006).
36.Thornton, K. and Poulsen, H.F.: Three-dimensional materials science: An intersection of three-dimensional reconstructions and simulations. MRS Bull. 33, 587 (2008).
37.Taheri, M.L., Browning, N.D., and Lewellena, J.: Symposium on ultrafast electron microscopy and ultrafast science. Microsc. Microanal. 15, 271 (2009).
38.Seidman:, D.N.Three dimensional atom probe tomography: Advances and applications. Ann. Rev. Mater. Res. 37, 137 (2007).
39.Tanaka, M., Sadamatsu, S., Nakamura, H., Higashida, K., Liu, G., and Robertson, I.M.: Sequential multiplication of dislocation sources along a crack front revealed by HVEM-tomography. J. Mater. Res. 26, 508 (2011).
40.Haider, M., Rose, H., Uhlemann, S., Kabius, B., and Urban, K.: Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron Microsc. (Tokyo). 47, 395 (1998).
41.Rose, H.: Prospects for realizing a sub-Å sub-eV resolution EFTEM. Ultramicroscopy 78, 13 (1999).
42.Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., and Urban, K.: A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53 (1998).
43.Haider, M., Müller, H., Uhlemann, S., Zach, J., Loebau, U., and Hoeschen, R.: Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167 (2008).
44.Kabius, B. and Rose, H.: Novel Aberration Correction Concepts (Elsevier, 2008).
45.Baum, P. and Zewail, A.H.: Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl. Acad. Sci. U.S.A. 104, 18409 (2007).
46.LaGrange, T., Armstrong, M.R., Boyden, K., Brown, C.G., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., Pyke, B.J., Reed, B.W., Shirk, M.D., Shuttlesworth, R.M., Stuart, B.C., Torralva, B.R., and Browning, N.D.: Single-shot dynamic transmission electron microscopy. Appl. Phys. Lett. 89, 044105 (2006).
47.Hilbert, S.A., Uiterwaal, C., Barwick, B., Batelaan, H., and Zewail, A.H.: Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U.S.A. 106, 10558 (2009).
49.Haque, M.A. and Saif, M.T.A.: Microscale materials testing using MEMS actuators. J. Microelectromech. Syst. 10, 146 (2001).
50.Hattar, K., Han, J., Saif, M.T.A., and Robertson, I.M.: In situ transmission electron microscopy observations of toughening mechanisms in ultra-fine grained columnar aluminum thin films. J. Mater. Res. 20, 1869 (2005).
51.Espinosa, H.D., Zhu, Y., and Moldovan, N.: Design and operation of a MEMS-based material testing system for nanomechanical characterization. J. Microelectromech. Syst. 16, 1219 (2007).
53.Frank, J.: Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell (Springer Science and Business Media, LLC., New York, 2006).
54.Subramaniam, S. and Milne, J.L.: Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141 (2004).
55.Lengyel, J.S., Milne, J.L., and Subramaniam, S.: Electron tomography in nanoparticle imaging and analysis. Nanomedicine 3, 125 (2008).
56.McEwen, B.F. and Marko, M.: The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49, 553 (2001).
57.Batenburg, K.J., Bals, S., Sijbers, J., Kubel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A., and Van Tendeloo, G.: 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109, 730 (2009).
58.Gonzalez, J.C., Hernandez, J.C., Lopez-Haro, M., Del Rio, E., Delgado, J.J., Hungria, A.B., Trasobares, S., Bernal, S., Midgley, P.A., and Calvino, J.J.: 3D characterization of gold nanoparticles supported on heavy-metal oxide catalysts by HAADF-STEM electron tomography. Angew. Chem. Int. Ed. 48, 5313 (2009).
59.Midgley, P.A., Weyland, M., Yates, T.J.V., Dunin-Borkowski, R.E., and Laffont, L.: Nanoscale analysis of three-dimensional structures by electron tomography. Scr. Mater. 55, 29 (2006).
60.Mobus, G. and Inkson, B.J.: Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369 (2001).
61.Ward, E.P.W., Yates, T.J.V., Fernandez, J.J., Vaughan, D.E.W., and Midgley, P.A.: Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C. 111, 11501 (2007).
62.Houk, R.J.T., Jacobs, B.W., Gabaly, F.E., Chang, N.N., Talin, A.A., Graham, D.D., House, S.D., Robertson, I.M., Allendorf, M.D.: Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. Nano Lett. 9, 3413 (2009).
63.Arslan, I., Yates, T.J.V., Browning, N.D., and Midgley, P.A.: Embedded nanostructures revealed in three dimensions. Science 309, 2195 (2005).
64.Weyland, M., Midgley, P.A., and Thomas, J.M.: Electron tomography of nanoparticle catalysts on porous supports: A new technique based on Rutherford scattering. J. Phys. Chem. B 105, 7882 (2001).
65.Gontard, L.C., Dunin-Borkowski, R.E., Chong, R.K.K., Ozkaya, D., and Midgley, P.A.: Electron tomography of Pt nanocatalyst particles and their carbon support. J. Phys. Conf. Ser. 26, 203 (2006).
66.Barnard, J.S., Sharp, J., Tong, J.R., and Midgley, P.A.: High-resolution three-dimensional imaging of dislocations. Science 313, 319 (2006).
67.Barnard, J.S., Sharp, J., Tong, J.R., and Midgley, P.A.: Weak-beam dark-field electron tomography of dislocations in GaN. J. Phys. Conf. Ser. 26, 247 (2006).
68.Sharp, J.H., Barnard, J.S., Kaneko, K., Higashida, K., and Midgley, P.A.: Dislocation tomography made easy: A reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008).
69.Tanaka, M., Higashida, K., Kaneko, K., Hata, S., and Mitsuhara, M.: Crack tip dislocations revealed by electron tomography in silicon single crystal. Scr. Mater. 59, 901 (2008).
70.Phatak, C., Beleggiab, M., and Graef, M.D.: Vector field electron tomography of magnetic materials: Theoretical development. Ultramicroscopy 108, 503 (2008).
71.Phatak, C., Graef, M.D., Petford-Long, A., Tanase, M., and Imre, A.: Reconstruction of 3D magnetic induction using Lorentz TEM. Microsc. Microanal. 14, 1055 (2008).
72.Phatak, C., Tanase, M., Petford-Long, A.K., and De Graef, M.: Determination of magnetic vortex polarity from a single Lorentz Fresnel image. Ultramicroscopy 109, 264 (2009).
73.Baumeister, W.: Electron tomography: Towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679 (2002).
74.Midgley, P.A. and Weyland, M.: 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413 (2003).
75.Arslan, I., Tong, J.R., and Midgley, P.A.: Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials. Ultramicroscopy 106, 994 (2006).
76.Arslan, I., Walmsley, J.C., Rytter, E., Bergene, E., and Midgley, P.A.: Toward three-dimensional nanoengineering of heterogeneous catalysts. J. Am. Chem. Soc. 130, 5716 (2008).
77.Friedrich, H., De Jongh, P.E., Verkleij, A.J., and De Jong, K.P.: Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 109, 1613 (2009).
78.Hungria, A.B., Eder, D., Windle, A.H., and Midgley, P.A.: Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. Catal. Today 143, 225 (2009).
79.Hernández-Garrido, J.C., Yoshida, K., Gai, P.L., Boyes, E.D., Christensen, C.H. and Midgley, P.A.: The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography. Catal. Today 160, 165 (2011).
80.Yoshida, K., Ikuhara, Y.H., Takahashi, S., Hirayama, T., Saito, T., Sueda, S., Tanaka, N., and Gai, P.L.: The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 20, 315703 (2009).
81.Weyland, M., Yates, T.J.V., Dunin-Borkowski, R.E., Laffont, L., and Midgley, P.A.: Nanoscale analysis of three-dimensional structures by electron tomography. Scr. Mater. 55, 29 (2006).
82.Ortalan, V., Herrera, M., Morgan, D.G., Browning, N.D.: Application of image processing to STEM tomography of low contrast materials. Ultramicroscopy 110, 67 (2009).
83.Gontard, L.C., Dunin-Borkowski, R.E., and Ozkaya, D.: Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J. Microsc. 232, 248 (2008).
84.Jarausch, K., Thomas, P., Leonard, D.N., Twesten, R., and Booth, C.R.: Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109, 326 (2009).
85.Yurtsever, A., Weyland, M., and Muller, D.A.: Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (2006).
86.Kaneko, K., Nagayama, R., Inoke, K., Noguchi, E., and Horita, Z.: Application of three-dimensional electron tomography using bright-field imaging: Two types of Si-phases in Al-Si alloy. Sci. Technol. Adv. Mater. 7, 726 (2006).
87.Tanaka, M., Honda, M., Mitsuhara, M., Hata, S., Kaneko, K., and Higashida, K.: Three-dimensional observation of dislocations by electron tomography in a silicon crystal. Mater. Trans. 49, 1953 (2008).
88.Liu, G.S. and Robertson, I.M.: Three-dimensional visualization of dislocation-precipitate interactions in a Al-4Mg-0.3Sc alloy using weak-beam dark-field electron tomography. J. Mater. Res. 26, 514, (2011).
89.Hata, S., Kimura, K., Gao, H., Matsumura, S., Doi, M., Moritani, T., Barnard, J.S., Tong, J.R., Sharp, J.H., and Midgley, P.A.: Electron tomography imaging and analysis of g and g′ domains in Ni-based superalloys. Adv. Mater. (Deerfield Beach Fla.) 20, 1905 (2008).
90.Lade, S.J., Paganin, D., and Morgan, M.J.: 3-D Vector tomography of Doppler-transformed fields by filtered-backprojection. Opt. Commun. 253, 382 (2005).
91.Phatak, C., Humphrey, E., Graef, M.D., and Petford-Long, A.K.: Determination of the 3-D magnetic vector potential using Lorentz transmission electron microscopy. Microsc. Microanal. 15, 134 (2009).
92.Stolojan, V., Dunin-Borkowski, R.E., Weyland, M., and Midgley, P.A.: Three-dimensional magnetic fields of nanoscale elements determined by electron-holographic tomography, in Electron Microscopy and Analysis 2001 (IOP Publishing, Bristol, UK, 2001).
93.Bals, S., Batenburg, K.J., Liang, D., Lebedev, O., Van Tendeloo, G., Aerts, A., Martens, J.A., and Kirschhock, C.E.A.: Quantitative three-dimensional modeling of zeotile through discrete electron tomography. J. Am. Chem. Soc. 131, 4769 (2009).
94.Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Kilaas, R., Radmilovic, V., and Kisielowski, C.: 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589 (2008).
95.Tong, J., Arslan, I., and Midgley, P.: A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55 (2006).
96.Batenburg, K.J. and Sijbers, J.: Generic iterative subset algorithms for discrete tomography. Discrete Appl. Math. 157, 438 (2009).
97.Batenburg, K.J. and Sijbers, J.: Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognit. 42, 2297 (2009).
98.Saghi, Z., Xu, X., and Mobus, G.: Model based atomic resolution tomography. J. Appl. Phys. 106, 024304 (2009).
99.Bar Sadan, M., Houben, L., Wolf, S.G., Enyashin, A., Seifert, G., Tenne, R., and Urban, K.: Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891 (2008).
100.Freitag, B. and Kisielowski, C.: Determining Resolution in the Transmission Electron Microscope: Object-Defined Resolution Below 0.5 Å. (Springer-Verlag, Berlin Heidelberg, 2008).
101.Alani, R. and Pan, M.: In situ transmission electron microscopy studies and real-time digital imaging. J. Microsc. 203, 128 (2001).
102.Armstrong, M.R., Boyden, K., Browning, N.D., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F., Kim, J.S., King, W.E., LaGrange, T.B., Pyke, B.J., Reed, B.W., Shuttlesworth, R.M., Stuart, B.C., and Torralva, B.R.: Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy 107, 356 (2007).
103.Flannigan, D.J., Lobastov, V.A., and Zewail, A.H.: Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. Angew. Chem. Int. Ed. 46, 9206 (2007).
104.Jau, T., Ding-Shyue, Y., and Zewail, A.H.: Ultrafast electron crystallography: 3. Theoretical modeling of structural dynamics. J. Phys. Chem. C 111, 8957 (2007).
105.Seidel, M.T., Chen, S., and Zewail, A.H.: Ultrafast electron crystallography. 2. Surface adsorbates of crystalline fatty acids and phospholipids. J. Phys. Chem. C 111, 4920 (2007).
106.Yang, D.S., Gedik, N., and Zewail, A.H.: Ultrafast electron crystallography. 1. Nonequilibrium dynamics of nanometer-scale structures. J. Phys. Chem. C 111, 4889 (2007).
107.Shorokhov, D. and Zewail, A.H.: 4D electron imaging: Principles and perspectives. Phys. Chem. Chem. Phys. 10, 2879 (2008).
108.Bostanjoglo, O. and Otte, D.: High-speed electron microscopy of nanocrystallization in Al-Ni films by nanosecond laser pulses. Phys. Status Solidi A Appl. Res. 150, 163 (1995).
109.Bostanjoglo, O., Tornow, R.P., and Tornow, W.: Nanosecond-exposure electron microscopy of laser-induced phase transformations. Ultramicroscopy 21, 367 (1987).
110.Campbell, G.H., LaGrange, T.B., King, W.E., Colvin, J.D., Ziegler, A., Browning, N.D., Kleinschmidt, H., and Bostanjoglo, O.: The HCP to BCC phase transformation in Ti characterized by nanosecond electron microscopy, in Proceedings of the Solid-Solid Phase Transformations in Inorganic Materials 2005; Vol. 2, edited by Howe, J.M., Laughlin, D.E., Lee, J.K., Dahmen, U., and Soffa, W.A. (Mater. Res. Soc. Symp. Proc. Warrendale, PA, 2005) p. 443.
111.LaGrange, T., Campbell, G.H., Colvin, J.D., King, W.E., Browning, N.D., Armstrong, M.R., Reed, B.W., Kim, J.S., and Stuart, B.C.: In-situ studies of the martensitic transformation in Ti thin films using the dynamic transmission electron microscope (DTEM), in In-Situ Electron Microscopy of Materials, edited by Ferreira, P.J., Robertson, I.M., Dehm, G., and Saka, H. (Mater. Res. Soc. Proc. 907E. Warrendale, PA, 2005) 0907-MM05-02.l-6.
112.Taheri, M.L., Reed, B.W., LaGrange, T.B., and Browning, N.D.: In situ laser synthesis of si nanowires in the dynamic TEM. Small 4, 2187 (2008).
113.Saka, H. (ed.), Proc. of the Int. Symp. on In-Situ Electron Microscopy, Nagoya, 2003, Philos. Mag. 84, 25/26 (2004).
114.Special Focus Issue—In-situ Transmission Electron Microscopy. Eds. Robertson, I.M., Kirk, M., Messerschmidt, U., Yang, J., and Hull, R.: In situ electron microscopy, J. Mater. Res. 20, (2005).
115.Sharma, R., Crozier, P.A., and Treacy, M.M.J.: Dynamic in situ electron microscopy as a tool to meet the challenges of the nanoworld. NSF Workshop Report, Tempe, Arizona, January 3–6, 2006 (2006).
116.Hirsch, P.B., Horne, R.W. and Whelan, M.J.: Direct observations of arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677 (1956).
117.Allen, C.W.: In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56, 200 (1994).
118.Carter, C.B. and Kohlstedt, D.L.: Electron irradiation damage in natural quartz grains. Phys. Chem. Miner. 7, 110 (1981).
119.Pedraza, D.F. and Koike, J.: Dimensional changes in grade H-451 nuclear graphite due to electron irradiation. Carbon 32, 727 (1994).
120.Smith, B.W. and Luzzi, D.E.: Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509 (2001).
121.Nagase, T. and Umakoshi, Y.: Electron irradiation induced crystallization of supercooled liquid in Zr based alloys. Mater. Trans. 48, 151 (2007).
122.Sepulveda-Guzman, S., Elizondo-Villarreal, N., Ferrer, D., Torres-Castro, A., Gao, X., Zhou, J.P., and Jose-Yacaman, M.: In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18, 335604 (2007).
123.Zu, X.T., Wan, F.R., Zhu, S., and Wang, L.M.: Irradiation-induced martensitic transformation of TiNi shape memory alloys. Physica B 351, 59 (2004).
124.Jencic, I., Bench, M.W., Robertson, I.M., and Kirk, M.A.: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974 (1995).
125.Butler, E.P.: In situ experiments in the transmission electron microscope. Rep. Prog. Phys. 42, 833 (1979).
126.Dewald, D.K., Lee, T.C., Robertson, I.M., and Birnbaum, H.K.: Dislocation structures ahead of advancing cracks. Metall. Mater. Trans. A, 21, 2411 (1990).
127.Ignat, M., Louchet, F., and Pelissier, J.: Deformation of a Ni-Based superalloy: Compression creep and in situ experiments, in International Series on the Strength and Fracture of Materials and Structures (Pergamon Press, Montreal, Quebec, 1986).
128.Castany, P., Pettinari-Sturmel, F., Crestou, J., Douin, J., and Coujou, A.: Experimental study of dislocation mobility in a Ti-6Al-4V alloy. Acta Mater. 55, 6284 (2007).
129.Castany, P., Pettinari-Sturmel, F., Douin, J., and Coujou, A.: In situ transmission electron microscopy deformation of the titanium alloy Ti-6Al-4V: Interface behaviour. Mater. Sci. Eng. A 483/484, 719 (2008).
130.Hsiung, L.L.M. and Nieh, T.G.: In situ TEM study of interface sliding and migration of an ultrafine lamellar structure, in Mechanical Properties of Nanostructured Materials--Experiments and Modeling, edited by Swadener, J.G., Lilleodden, E., Asif, S., Bahr, D., and Weygand, D. (Mater. Res. Soc. Symp. Proc. 880E, Warrendale, PA, 2005), BB1.9.
131.Robertson, I.M., Ferreira, P.J., Dehm, G., Hull, R., and Stach, E.A.: Visualizing the behavior of dislocations—seeing is believing. MRS Bull. 33, 122 (2008).
132.Carlton, C.E. and Ferreira, P.J.: Dislocation motion-induced strain in nanocrystalline materials: Overlooked considerations. Mater. Sci. Eng. A 486, 672 (2008).
133.Deneen, J., Mook, W.M., Minor, A., Gerberich, W.W., and Carter, C.B.: In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477 (2006).
134.Radisic, A., Ross, F.M., and Searson, P.C.: In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 7862 (2006).
135.Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., and Ross, F.M.: Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532 (2003).
136.Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., and Ross, F.M.: Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238 (2006).
137.Lee, T.C., Dewald, D.K., Eades, J.A., Robertson, I.M., and Birnbaum, H.K.: An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438 (1991).
138.Robertson, I.M. and Teter, D.: Controlled environment transmission electron microscopy. J. Microsc. Res. Tech. 42, 260 (1998).
139.Boyes, E.D., Gai, P.L., and Hanna, L.G.: Controlled environment [IECELL] TEM for dynamic in-situ reaction studies with HREM lattice imaging, in In Situ Electron and Tunneling Microscopy of Dynamic Processes, edited by Sharma, R., Gai, P.L., Gajdardziska-Josifovska, M., Sinclair, R., and Whitman, L.J. (Mater. Res. Soc. Proc. 404, Pittsburgh, PA, 1996) p. 53.
140.Gai, P.L.: Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21 (2002).
141.Gai, P.L., Sharma, R., and Ross, F.M.: Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull. 33, 107 (2008).
142.Allen, C.W., Funk, L.L., and Ryan, E.A.: New instrumentation in Argonne's HVEM-Tandem Facility: Expanded capability for in situ ion beam studies, in lon-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y.-T., Harriott, L.R., and Sigmon, T.W. (Mater. Res. Soc. Proc. 396, Pittsburgh, PA, 1996) p. 641.
143.Allen, C.W. and Ryan, E.A.: In situ ion-beam research in Argonne's intermediate voltage electron microscope, in Microstructure Evolution During Irradiation, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and Diaz, T.Rubia, de la (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, 1997), p. 277.
144.Hinks, J.A.: A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Meth. B 267, 3652 (2009).
145.Drucker, J., Sharma, R., Weiss, K., Ramakrishna, B.L., and Kouvetakis, J.: In situ real time observation of chemical vapor deposition using an environmental transmission electron microscope, in In Situ Electron and Tunneling Microscopy of Dynamic Processes, edited by Sharma, R., Gai, P.L., Gajdardziska-Josifovska, M., Sinclair, R., and Whitman, L.J. (Mater. Res. Soc. Proc. 404. Pittsburgh, PA, 1996) p. 75.
146.Takeguchi, M., Wu, Y., Tanaka, M., and Furuya, K.: In situ UHV-TEM observation of the direct formation of Pd2Si islands on Si(111) surfaces at high temperature. Appl. Surf. Sci. 159/160, 225 (2000).
147.Gai, P.L. and Boyes, E.D.: Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153 (2009).
148.Robertson, I.M., Birnbaum, H.K., and Sofronis, P.: Hydrogen effects on plasticity, in Dislocations in Solids, edited by Hirth, J.P. and Kubin, L. (Elsevier, 2009).
149.Li, P., Liu, J., Nag, N., and Crozier, P.A.: In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer-Tropsch catalysts. Appl. Catal. A Gen. 307, 212 (2006).
150.Li, P., Liu, J., Nag, N., and Crozier, P.A.: In situ preparation of Ni-Cu/TiO2 bimetallic catalysts. J. Catal. 262, 73 (2009).
151.Gamalski, A., Moore, E.S., Treacy, M.M.J., Sharma, R., and Rez, P.: Diffusion-gradient-induced length instabilities in the catalytic growth of carbon nanotubes. Appl. Phys. Lett. 95, 233109 (2009).
152.Sharma, R., Rez, P., and Treacy, M.M.J.: Direct observations of the growth of carbon nanotubes using in situ transmission electron microscopy. J. Surf. Sci. Nanotechnol. 4, 460 (2006).
153.Bostanjoglo, O. and Thomsen-Schmidt, P.: Time-resolved TEM of laser-induced structural changes in GeTe films, Appl. Surf. Sci. 46, 392 (1990).
154.LaGrange, T., Campbell, G.H., Reed, B., Taheri, M., Pesavento, J.B., Kim, J.S., and Browning, N.D.: Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108, 1441 (2008).
155.Carbone, F., Barwick, B., Oh-Hoon, K., Hyun Soon, P., Baskin, J.S., and Zewail, A.H.: EELS femtosecond resolved in 4D ultrafast electron microscopy. Chem. Phys. Lett. 468, 107 (2009).
156.Carbone, F., Oh-Hoon, K., and Zewail, A.H.: Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181 (2009).
157.Gahlmann, A., Sang Tae, P., and Zewail, A.H.: Ultrashort electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions. Phys. Chem. Chem. Phys. 10, 2894 (2008).
158.Park, H.S., Baskin, J.S., Barwick, B., Kwon, O.-H., and Zewail, A.H.: 4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics. Ultramicroscopy 110, 7 (2009).
159.Yurtsever, A. and Zewail, A.H.: 4D Nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science 326, 708 (2009).
160.Gilbert, M.R., Yao, Z., Kirk, M.A., Jenkins, M.L., and Dudarev, S.L.: Vacancy defects in Fe: Comparison between simulation and experiment. J. Nucl. Mater. 386388, 36 (2009).
161.Reed, B.W., LaGrange, T., Shuttlesworth, R.M., Gibson, D.J., Campbell, G.H., and Browning, N.D.: Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum. 81, 053706 (2010).
162.Miller, M.K. and Forbes, R.G.: Atom probe tomography. Mater. Charact. 60, 461 (2009).
163.Kellogg, G.L. and Tsong, T.T.: Pulsed-laser atom-probe field-ion microscopy. J. Appl. Phys. 51, 1184 (1980).
164.Bas, P., Bostel, A., Deconihout, B., and Blavette, D.: A general protocol for the reconstruction of 3d atom-probe data. Appl. Surf. Sci. 87-8, 298 (1995).
165.Gault, B., de Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C., and Ringer, S.P.: Estimation of the reconstruction parameters for atom probe tomography. Microsc. Microanal. 14, 296 (2008).
166.Miller, M.K. and Reed, R.C.: Local electrode atom probe characterization of crept CMSX-4 superalloy. TMS Lett. 3, 5 (2006).
167.Tin, S., Yeh, A.C., Ofori, A.P., Reed, R.C., Babu, S.S., and Miller, M.K.: Atomic partitioning of ruthenium in Ni-based superalloys, in Superalloys 2004: Proceedings of the Tenth International Symposium on Superalloys. Sponsored by the TMS Seven Springs International Symposium Committee, in Cooperation with the TMS High Temperature Alloys Committee and ASM International, September 19–23, 2004, Seven Springs Mountain Resort in Champion, PA (TMS, Warrendale, PA, 2004).
168.Vurpillot, F., Houard, J., Vella, A., and Deconihout, B.: Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D: Appl. Phys. 42, 125502 (2009).
169.Bunton, J.H., Olson, J.D., Lenz, D.R., and Kelly, T.E.: Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc. Microanal. 13, 418 (2007).
170.Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y., and Hasegawa, M.: Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 1479 (2009).
171.Stiller, K. and Hattestrand, M.: Nanoscale precipitation in a maraging steel studied by APFIM. Microsc. Microanal. 10, 342 (2004).
172.Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K., and Hono, K.: Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr. Mater. 61, 693 (2009).
173.Miller, M.K., Russell, K.F., Thompson, K., Alvis, R., and Larson, D.J.: Review of atom probe FIB-based specimen preparation methods. Microsc. Microanal. 13, 428 (2007).
174.Panayi, P.: Reflectron, U.S. Patent No. 20100006752 (2010).
175.Vurpillot, F., Gruber, M., Duguay, S., Cadel, E., and Deconihout, B.: Modeling artifacts in the analysis of test semiconductor structures in atom probe tomography, in Frontiers of Characterization and Metrology for Nanoelectronics: 2009, May 11–15, 2009, American Institute of Physics.
176.Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J., and Roberts, J.P.: Spatial distribution maps for atom probe tomography. Microsc. Microanal. 13, 437 (2007).
177.Miller, M.K., Kenik, E.A., and Zagula, T.A.: Ordering in Ni4Mo: An APFIM/TEM/HVEM study, in 34th International Field Emission Symposium, July 13–17, 1987, France; J. Phys. Colloques 48, C6–385 (1987).
178.Detor, A.J., Miller, M.K., and Schuh, C.A.: Measuring grain-boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett. 87, 581 (2007).
179.Miller, M.K., Cerezo, A., Hetherington, M.G., and Smith, G.D.W.: Atom Probe Field Ion Microscopy (Clarendon Press, 1996).
180.Moody, M.P., Gault, B., Stephenson, L.T., Haley, D., and Ringer, S.P.: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815 (2009).
181.Miller, M.K. and Kelly, T.F.: The atom TOMography (ATOM) concept. Microsc. Microanal. 16, 1856 (2010).
182.Freitag, J., Kipfstuhl, S., and Faria, S.H.: The connectivity of crystallite agglomerates in low-density firn at Kohnen station, Dronning Maud Land, Antarctica. Ann. Glaciol. 49, 114 (2008).
183.Cullen, D. and Baker, I.: Observation of impurities in ice. Microsc. Res. Tech. 55, 198 (2001).
184.Cullen, D. and Baker, I.: Observation of sulfate crystallites in Vostok accretion ice. Mater. Charact. 48, 263 (2002).
185.Baker, I. and Cullen, D.: The structure and chemistry of 94 m Greenland Ice Sheet Project 2 ice. Ann. Glaciol. 35, 224 (2002).
186.Baker, I., Cullen, D., and Iliescu, D.: The microstructural location of impurities in ice. Can. J. Phys. 81, 1 (2003).
187.Domine, F., Lauzier, T., Cabanes, A., Legagneux, L., Kuhs, W.F., Techmer, K., and Heinrichs, T.: Snow metamorphism as revealed by scanning electron microscopy. Microsc. Res. Tech. 62, 33 (2003).
188.Iliescu, D., Baker, I., and Chang, H.: Determining the orientations of ice crystals using electron backscatter patterns. Microsc. Res. Tech. 63, 183 (2004).
189.Obbard, R., Iliescu, D., Cullen, D., Chang, J., and Baker, I.: SEM/EDS comparison of polar and seasonal temperate ice. Microsc. Res. Tech. 62, 49 (2003).
190.Baker, I., Iliescu, D., Obbard, R., Chang, H., Bostick, B., and Daghlian, C.P.: Microstructural characterization of ice cores. Ann. Glaciol. 42, 441 (2005).
191.Obbard, R., Baker, I., and Sieg, K.: Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets. J. Glaciol. 52, 546 (2006).
192.Chino, Y. and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).
193.Deville, S.: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155 (2008).
194.Spoerke, E.D., Murray, N.G.D., Li, H., Brinson, L.C., Dunand, D.C., and Stupp, S.I.: Titanium with aligned, elongated pores for orthopedic tissue engineering applications. J. Biomed. Mater. Res. A 84A, 402 (2008).
195.Fife, J.L., Li, J.C., Dunand, D.C., and Voorhees, P.W.: Morphological analysis of pores in directionally freeze-cast titanium foams. J. Mater. Res. 24, 117 (2009).
196.Freitag, J., Wilhelms, F., and Kipfstuhl, S.: Microstructure-dependent densification of polar firn derived from x-ray microtomography. J. Glaciol. 50, 243 (2004).
197.Lundy, C.C., Edens, M.Q., and Brown, R.L.: Measurement of snow density and microstructure using computed tomography. J. Glaciol. 48, 312 (2002).
198.Lomonaco, R.W., Chen, S., and Baker, I.: Characterization of porous snow with SEM and micro CT. Microsc. Microanal. 15, 1110 (2009).
199.Schwander, J., Sowers, T., Barnola, J.M., Blunier, T., Fuchs, A., and Malaize, B.: Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483 (1997).
200.Sowers, T., Bender, M., Raynaud, D., and Korotkevich, Y.S.: Delta-N-15 of N2 in air trapped in polar ice—A tracer of gas-transport in the firn and a possible constraint on ice age-gas age-differences. J. Geophys. Res. 97, 15683 (1992).
201.Bender, M., Sowers, T., and Brook, E.: Gases in ice cores. Proc. Natl. Acad. Sci. U.S.A. 94, 8343 (1997).
202.Bender, M., Sowers, T., and Lipenkov, V.: On the concentrations of O-2, N-2, and Ar in trapped gases from ice cores. J. Geophys. Res. 100, 18651 (1995).
203.Chen, Y.K., Chu, Y.S., JaeMock, Y., McNulty, I., Qun, S., Voorhees, P.W., and Dunand, D.C.: Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography. Appl. Phys. Lett. 96, 043122 (2010).
204.Larson, B.C., El-Azab, A., Yang, W.G., Tischler, J.Z., Liu, W.J., and Ice, G.E.: Experimental characterization of the mesoscale dislocation density tensor. Philos. Mag. 87, 1327 (2007).
205.Suter, R.M., Hennessy, D., Xiao, C., and Lienert, U.: Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: Single-crystal verification. Rev. Sci. Instrum. 77, 123905 (2006).
206.Park, J.S., Revesz, P., Kazimirov, A., and Miller, M.P.: A methodology for measuring in situ lattice strain of bulk polycrystalline material under cyclic load. Rev. Sci. Instrum. 78, 023910 (2007).
207.Larson, B.C., Yang, W., Tischler, J.Z., Ice, G.E., Budai, J.D., Liu, W., and Weiland, H.: Micron-resolution 3-D measurement of local orientations near a grain-boundary in plane-strained aluminum using x-ray microbeams. Int. J. Plast. 20, 543 (2004).
208.Budai, J.D., Liu, W., Tischler, J.Z., Pan, Z.W., Norton, D.P., Larson, B.C., Yang, W., and Ice, G.E.: Polychromatic x-ray micro- and nanodiffraction for spatially-resolved structural studies. Thin Solid Films 516, 8013 (2008).
209.Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Budai, J.D., Tischler, J.Z., and Liu, W.J.: Deformation microstructure under microindents in single-crystal Cu using three-dimensional x-ray structural microscopy. J. Mater. Res. 19, 66 (2004).
210.Bunge, H.J., Wcislak, L., Klein, H., Garbe, U., and Schneider, J.R.: Texture and microstructure analysis with high-energy synchrotron radiation. Adv. Eng. Mater. 4, 300 (2002).
211.Schmidt, S., Nielsen, S.F., Gundlach, C., Margulies, L., Huang, X., and Jensen, D.J.: Watching the growth of bulk grains during recrystallization of deformed metals. Science 305, 229 (2004).
212.Godiksen, R.B., Trautt, Z.T., Upmanyu, M., Schiotz, J., Jensen, D.J., and Schmidt, S.: Simulations of boundary migration during recrystallization using molecular dynamics. Acta Mater. 55, 6383 (2007).
213.Martorano, M.A., Fortes, M.A., and Padilha, A.F.: The growth of protrusions at the boundary of a recrystallized grain. Acta Mater. 54, 2769 (2006).
214.Sreekala, S. and Haataja, M.: Recrystallization kinetics: A coupled coarse-grained dislocation density and phase-field approach. Phys. Rev. B 76, 094109 (2007).
215.Zhang, Y.B., Godfrey, A., Liu, Q., Liu, W., and Jensen, D.J.: Analysis of the growth of individual grains during recrystallization in pure nickel. Acta Mater. 57, 2631 (2009).
216.Anselmino, E.: Microstructural Effects on Grain Boundary Motion in Al-Mn Alloys. Ph.D. Thesis, Delft University Technology (2007).
217.Kacher, J., Robertson, I.M., Nowell, M., Knapp, J., and Hattar, K.: Study of rapid grain boundary migration in a nanocrystalline Ni thin film. Mater. Sci. Eng. A 528, 1628 (2011).
218.Bruno, G., Pinto, H.C., and Reimers, W.: γ′ nucleation and growth in the nickel-base superalloy SC16, in Neutrons in Science and Industry. International Conference on Neutron Scattering 2001, September 9–13, 2001, Germany (Springer-Verlag, Berlin New York Heidelberg, 2002).
219.Ma, D., Stoica, A.D., Wang, X.L., Lu, Z.P., Xu, M., and Kramer, M.: Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability. Phys. Rev. B 80, 014202 (2009).
220.Ratti, M., Leuvrey, D., Mathon, M.H., and de Carlan, Y.: Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J. Nucl. Mater. 386388, 540 (2009).
221.Noyan, I.C. and Cohen, J.B.: Residual Stress: Measurement by Diffraction and Interpretation, in Springer Series on Materials Research and Engineering, (Springer-Verlag, Berlin New York Heidelberg, 1987).
222.Withers, P.J. and Bhadeshia, H.K.D.H.: Overview: Residual stress part 1—Measurement techniques. Mater. Sci. Technol. 17, 355 (2001).
223.Wang, X.L.: The application of neutron diffraction to engineering problems. JOM 58, 52 (2006).
224.Bouchard, P.J., Withers, P.J., McDonald, S.A., and Heenan, R.K.: Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel. Acta Mater. 52, 23 (2004).
225.Ohms, C., Wimpory, R., and Neov, D.: Residual stress measurement by neutron diffraction in a single bead on plate weld: Influence of instrument and measurement settings on the scatter of the results, in 6th International Conference on Processing and Manufacturing of Advanced Materials—THERMEC’2009, August 25–29, 2009, Berlin, Germany (Trans Tech Publications, 2010).
226.Wang, X.-L., Payzanta, E.A., Taljata, B., Hubbarda, C.R., Keisera, J.R., and Jirinecb, M.J.: Experimental determination of the residual stresses in a spiral weld overlay tube. Mater. Sci. Eng. A 232, 31 (1997).
227.Webster, P.J., Wang, X., Mills, G., and Webster, G.A.: Residual stress changes in railway rails. Physica B 180/181, 1029 (1992).
228.ISIS: Case Study: Wing Quality Soars at ISIS. Science and Technology Facilities Council.
229.Feng, Z., Wang, X.-L., Spooner, S., Goodwin, G.M., Masiasz, P.J., Hubbard, C.R., and Zacharia, T.: A finite element model for residual stress in repair welds, in Proceedings of 1996 ASME Pressure Vessels and Piping Conference, PVP-Vol. 327, 1996, pp 119–126.
230.Wollmershauser, J.A., Kabra, S., and Agnew, S.R.: In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg. Acta Mater. 57, 213 (2009).
231.Cheng, S., Stoica, A.D., Wang, X.L., Ren, Y., Almer, J., Horton, J.A., Liu, C.T., Clausen, B., Brown, D.W., Liaw, P.K., and Zuo, L.: Deformation crossover: From nano- to mesoscale. Phys. Rev. Lett. 103, 035502 (2009).
232.Fan, G.J., Li, L., Bin, Y., Choo, H., Liaw, P.K., Saleh, T.A., Clausen, B., and Brown, D.W.: In situ neutron-diffraction study of tensile deformation of a bulk nanocrystalline alloy. Mater. Sci. Eng. A 506, 187 (2009).
233.Wang, Y.-D., Tian, H., Stoica, A.D., Wang, X.-L., Liaw, P.K., and Richardson, J.W.: The development of grain-orientation-dependent residual stressess in a cyclically deformed alloy. Nat. Mater. 2, 101 (2003).
234.Benson, M.L., Liaw, P.K., Saleh, T.A., Choo, H., Brown, D.W., Daymond, M.R., Huang, E.W., Wang, X.L., Stoica, A.D., Buchanan, R.A., and Klarstrom, D.L.: Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation. Physica B 385/386, 523 (2006).
235.Benson, M.L., Stoica, A.D., Liaw, P.K., Choo, H., Saleh, T.A., Wang, X.L., Brown, D.W., and Klarstrom, D.L.: Intergranular strain and phase transformation in a cobalt-based superalloy. Mater. Sci. Forum 524/525, 893 (2006).
236.Ludwig, W., Schmidt, S., Lauridsen, E.M., and Poulsen, H.F.: X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J. Appl. Cryst. 41, 302 (2008).
237.Johnson, G., King, A., Honnicke, M.G., Marrow, J., and Ludwig, W.: x-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. J. Appl. Cryst. 41, 310 (2008).
238.Nielsen, S.F., Poulsen, H.F., Beckmann, F., Thorning, C., and Wert, J.A.: Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater. 51, 2407 (2003).
239.Wang, X.L., Holden, T.M., Rennich, G.Q., Stoica, A.D., Liaw, P.K., Choo, H., and Hubbard, C.R.: VULCAN—The engineering diffractometer at the SNS. Physica B 385/386, 673 (2006).
240.Wang, X.-L., Holden, T.M., Stoica, A.D., An, K., Skorpenske, H.D., Jones, A.B., Rennich, G.Q., and Iverson, E.B.: First results from the VULCAN diffractometer at the SNS. Mater. Sci. Forum 652, 105 (2010).
241.Mason, T.E., Abernathy, D., Anderson, I., Ankner, J., Egami, T., Ehlers, G., Ekkebus, A., Granroth, G., Hagen, M., Herwig, K., Hodges, J., Hoffmann, C., Horak, C., Horton, L., Klose, F., Larese, J., Mesecar, A., Myles, D., Neuefein, J., Ohl, M., Tulk, C., Wang, X.-L., and Zhao, J.: The Spallation neutron source in Oak Ridge: A powerful tool for materials research. Physica B 385/386, 955 (2006).
242.Woo, W., Feng, Z., Hubbard, C.R., David, S.A., Wang, X.L., Clausen, B., and Ungar, T.: In-situ time-resolved neutron diffraction measurements of microstructure variations during friction stir welding in a 6061-T6 aluminum alloy, in 8th International Conference on Trends in Welding Research, June 1–6, 2008, Pine Mountain, GA (ASM International, 2009).
243.De Graef, M., Kral, M.V., and Hillert, M.: A modern 3-D view of an “Old” pearlite colony. JOM 58, 25 (2006).
244.Mangan, A., Lauren, P.D., and Shiflet, G.J.: Three-dimensional reconstruction of Widmanstatten plates in Fe-12.3Mn-0.8C. J. Microsc. 188, 36 (1997).
245.Tewari, A., Gokhale, A.M., and German, R.M.: Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures. Acta Mater. 47, 3721 (1999).
246.Saylor, D.M., El-Dasher, B.S., Sano, T., and Rohrer, G.S.: Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J. Am. Ceram. Soc. 87, 670 (2004).
247.Saylor, D.M., Morawiec, A., and Rohrer, G.S.: Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater. 51, 3663 (2003).
248.Rowenhorst, D.J., Gupta, A., Feng, C.R., and Spanos, G.: 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scr. Mater. 55, 11 (2006).
249.Rowenhorst, D.J. and Voorhees, P.W.: Measurements of the grain boundary energy and anisotropy in tin. Metall. Mater. Trans. A 36A, 2127 (2005).
250.Wolfsdorf, T.L., Bender, W.H., and Voorhees, P.W.: The morphology of high volume fraction solid-liquid mixtures: An application of microstructural tomography. Acta Mater. 45, 2279 (1997).
251.Li, M., Ghosh, S., Rouns, T.N., Weiland, H., Richmond, O., and Hunt, W.: Serial sectioning method in the construction of 3-D microstructures for particle-reinforced MMCs. Mater. Charact. 41, 81 (1998).
252.Kral, M.V., Mangan, M.A., Spanos, G., and Rosenberg, R.O.: Three-dimensional analysis of microstructures. Mater. Charact. 45, 17 (2000).
253.Wall, M.A., Schwartz, A.J., and Nguyen, L.: A high-resolution serial sectioning specimen preparation technique for application to electron backscatter diffraction. Ultramicroscopy 88, 73 (2001).
254.Spowart, J.E., Mullens, H.M., and Puchala, B.T.: Collecting and analyzing microstructures in three dimensions: A fully automated approach. JOM 55, 35 (2003).
255.Konrad, J., Zaefferer, S., and Raabe, D.: Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater. 54, 1369 (2006).
256.Michael, J. and Giannuzzi, L.: Improved EBSD sample preparation via low energy Ga+ FIB ion milling. Microsc. Microanal. 13, 926 (2007).
257.Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, H.Y., Hiller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B., and Barnett, S.A.: Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5, 541 (2006).
258.Gostovic, D., Smith, J.R., Kundinger, D.P., Jones, K.S., and Wachsman, E.D.: Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid State Lett. 10, B214 (2007).
259.Adams, B.L., Wright, S.I., and Kunze, K.: Orientation imaging: The emergence of a new microscopy. Metall. Mater. Trans. A 24A, 819 (1993).
260.Engler, O. and Randle, V.: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. (Taylor and Francis, 2010).
261.Zaefferer, S., Wright, S.I., and Raabe, D.: Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metall. Mater. Trans. A 39A, 374 (2008).
262.Groeber, M., Ghosh, S., Uchic, M.D., and Dimiduk, D.M.: A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 1: Statistical characterization. Acta Mater. 56, 1257 (2008).
263.Zaefferer, S., Wright, S.I., and Raabe, D.: Three-dimensional orientation microscopy in a focused ion beam–scanning electron microscope: A new dimension of microstructure characterization. Metall. Mater. Trans. A 39A, 374 (2008).
264.Kotula, P.G., Keenan, M.R., and Michael, J.R.: Automated analysis of SEM x-ray spectral images: A powerful new microanalysis tool. Microsc. Microanal. 9, 1 (2003).
265.Humphreys, F.J.: A new analysis of recovery, recrystallisation, and grain growth. Mater. Sci. and Tech. 15, 37 (1999).
266.Rofman, O.V., Bate, P.S., Brough, I., and Humphreys, F.J.: Study of dynamic grain growth by electron microscopy and EBSD. J. Microsc. Oxford 233, 432 (2009).
267.Tsurekawa, S., Fukino, T., and Matsuzaki, T.: In-situ SEM/EBSD observation of abnormal grain growth in electrodeposited nanocrystalline nickel. Int. J. Mater. Res. 100, 800 (2009).
268.Taheri, M.L., Sebastian, J.T., Reed, B.W., Seidman, D.N., and Rollett, A.D.: Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. Ultramicroscopy 110, 278 (2009).
269.Seward, G.G.E., Celotto, S., Prior, D.J., Wheeler, J., and Pond, R.C.: In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium. Acta Mater. 52, 821 (2004).
270.Huang, Y., Humphreys, F.J., and Brough, I.: The application of a hot deformation SEM stage, backscattered electron imaging and EBSD to the study of thermomechanical processing. J. Microsc. Oxford 208, 18 (2002).
271.Raabe, D., Sachtleber, M., Weiland, H., Scheele, G., and Zhao, Z.S.: Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 51, 1539 (2003).
272.Niederberger, C., Mook, W.M., Maeder, X. and Michler, J.: In situ electron backscatter diffraction (EBSD) during the compression of micropillars. Mater. Sci. Eng. A Struct. 527, 4306 (2010).
273.Dillon, S.J. and Rohrer, G.S.: Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB. J. Am. Ceram. Soc. 92, 1580 (2009).
274.Li, J., Dillon, S.J., and Rohrer, G.S.: Relative grain boundary area and energy distributions in nickel. Acta Mater. 57, 4304 (2009).
275.Dillon, S.J. and Rohrer, G.S.: Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater. 57, 1 (2009).
276.Adams, B.L. and Kacher, J.: EBSD-based microscopy: Resolution of dislocation density. Comput. Mater. Con. 14, 185 (2009).
277.Kacher, J., Landon, C., Adams, B.L., and Fullwood, D.: Bragg’s Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109, 1148 (2009).
278.Karamched, P.S. and Wilkinson, A.J.: High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy. Acta Mater. 59, 263 (2011).
279.Dingley, D.J., Wilkinson, A.J., Meaden, G., and Karamched, P.S.: Elastic strain tensor measurement using electron backscatter diffraction in the SEM. J. Electron Microsc. (Tokyo) 59, S155 (2010).
280.Hoelzer, D.T., Allinger, M.J., Miller, M.K., Odette, G.R., and Bentley, J.: Development of advanced nanostructured ferritic alloys for nuclear fission and fusion applications. JOM 56, 92 (2004).
281.Martin, U. and Heilmaier, M.: Novel dispersion strengthened metals by mechanical alloying. Adv. Eng. Mater. 6, 515 (2004).
282.Miller, M.K., Hoelzer, D.T., Kenik, E.A., and Russell, K.F.: Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13, 387 (2005).
283.Schneibel, J.H., Liu, C.T., Miller, M.K., Mills, M.J., Sarosi, P., Heilmaier, M., and Sturm, D.: Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength. Scr. Mater. 61, 793 (2009).
284.Fu, C.L., Krcmar, M., Painter, G.S., and Chen, X.Q.: Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 99, 225502 (2007).
285.Xu, J., Liu, C.T., Miller, M.K., and Chen, H.M.: Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy. Phys. Rev. B 79, 020204(R) (2009).
286.Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A., and Bartelt, N.C.: Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579 (2008).
287.Yang, L., Miller, M.K., Wang, X.L., Liu, C.T., Stoica, A.D., Ma, D., Almer, J., and Shi, D.: Nanoscale solute partitioning in bulk metallic glasses. Adv. Mater. (Deerfield Beach Fla.) 21, 305 (2009).
288.Kulkarni, A., Mehraeen, S., Reed, B.W., Okamoto, N.L., Browning, N.D., and Gates, B.C.: Nearly uniform decaosmium clusters supported on MgO: Characterization by x-ray absorption spectroscopy and scanning transmission electron microscopy. J. Phys. Chem. C 113, 13377 (2009).
289.Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).
290.El-Dasher, B.S., Adams, B.L., and Rollett, A.D.: Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycrystals. Scr. Mater. 48, 141 (2003).
291.Field, D.P., Magid, K.R., Mastorakos, I.N., Florando, J.N., Lassila, D.H., and Morris, J.W.: Mesoscale strain measurement in deformed crystals: A comparison of x-ray microdiffraction with electron backscatter diffraction. Philos. Mag. 90, 1451 (2010).
292.Jakobsen, B., Poulsen, H.F., Lienert, U., Almer, J., Shastri, S.D., Sorensen, H.O., Gundlach, C., and Pantleon, W.: Formation and subdivision of deformation structures during plastic deformation. Science 312, 889 (2006).
293.Jakobsen, B., Poulsen, H.F., Lienert, U., and Pantleon, W.: Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures. Acta Mater. 55, 3421 (2007).
294.Padilla, H.A., Smith, C.D., Lambros, J., Beaudoin, A.J., and Robertson, I.M.: Effects of deformation twinning on energy dissipation in high rate deformed zirconium. Metall. Mater. Trans. A 38, 2916 (2007).
295.Clark, B.G., Robertson, I.M., Dougherty, L.M., Ahn, D.C., and Sofronis, P.: High-temperature dislocation-precipitate interactions in Al alloys: An in situ transmission electron microscopy deformation study. J. Mater. Res. 20, 1792 (2005).
296.Dougherty, L.M., Robertson, I.M., and Vetrano, J.S.: Fundamental process responsible for continuous dynamic recrystallization: An in-situ TEM study, in Hot Deformation of Aluminum Alloys III, 2–6 March 2003, San Diego, CA (Minerals Metals, Materials Society, 2003).
297.Xiang, Y. and Srolovitz, D.J.: Dislocation climb effects on particle bypass mechanisms. Philos. Mag. 86, 3937 (2006).
298.Xiang, Y., Srolovitz, D.J., Cheng, L.T., and Weinan, E.: Level set simulations of dislocation-particle bypass mechanisms. Acta Mater. 52, 1745 (2004).
299.Robach, J.S., Robertson, I.M., Wirth, B.D., and Arsenlis, A.: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos. Mag. 83, 955 (2003).
300.Robertson, I.M., Robach, J.S., Lee, H.J., and Wirth, B.D.: Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 54, 1679 (2006).
301.Lee, H.-J., Shim, J.-H., and Wirth, B.D.: Atomistic study of screw dislocation—Obstacle interactions in BCC Mo. JOM 56, 68 (2004).
302.Wirth, B.D., Bulatov, V.V., and De La Diaz Rubia, T.: Dislocation-stacking fault tetrahedron interactions in Cu. J. Eng. Mater. Trans. ASME 124, 329 (2002).
303.Detor, A.J., Miller, M.K., and Schuh, C.A.: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).
304.Detor, A.J., Miller, M.K., and Schuh, C.A.: Measuring grain-boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. 87, 581 (2007).
305.Detor, A.J. and Schuh, C.A.: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system. Acta Mater. 55, 4221 (2007).
306.Birtcher, R.C., Kirk, M.A., Furuya, K., Lumpkin, G.R., and Ruault, M.O.: In situ transmission electron microscopy investigation of radiation effects. J. Mater. Res. 20, 1654 (2005).
307.Hernandez-Mayoral, M., Yao, Z., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).
308.Jenkins, M.L., Yao, Z., Hernandez-Mayoral, M., and Kirk, M.A.: Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 389, 197 (2009).
309.Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).
310.Hattar, K., Demkowicz, M.J., Misra, A., Robertson, I.M., and Hoagland, R.G.: Arrest of He bubble growth in Cu-Nb multilayer nanocomposites. Scr. Mater. 58, 541 (2008).
311.Höchbauer, T., Misra, A., Hattar, K., and Hoagland, R.G.: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).
312.Misra, A., Demkowicz, M.J., Zhang, X., and Hoagland, R.G.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).
313.Lozano-Perez, S., Yamada, T., Terachi, T., Schroder, M., English, C.A., Smith, G.D.W., Grovenor, C.R.M., and Eyre, B.L.: Multi-scale characterization of stress-corrosion cracking of cold-worked stainless steels and the influence of Cr content. Acta Mater. 57, 5361 (2009).
314.Lozano-Perez, S.: 3-D characterization of SCC in cold worked stainless steels from PWRs, in 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Virginia Beach, VA, (2009).
315.Andresen, P.L., Chou, P.H., Morra, M.M., Lawrence Nelson, J., and Rebak, R.B.: Microstructural and stress-corrosion cracking characteristics of austenitic stainless steels containing silicon. Metall. Mater. Trans. A 40, 2824 (2009).
316.Garcia, C., Martin, F., De Tiedra, P., Heredero, J.A., and Aparicio, M.L.: Effects of prior cold work and sensitization heat treatment on chloride stress-corrosion cracking in type 304 stainless steels. Corrosion Sci. 43, 1519 (2001).
317.Nakano, J., Miwa, Y., Tsukada, T., Endo, S., and Hide, K.: In situ SCC observation on neutron irradiated thermally sensitized austenitic stainless steel. J. Nucl. Mater. 367370, 940 (2007).
318.Lozano-Perez, S., Saxey, D.W., Yamada, T., and Terachi, T.: Atom-probe tomography characterization of the oxidation of stainless steel. Scr. Mater. 62, 855 (2010).
319.Lozano-Perez, S., Rodrigo, P., and Gontard, L.: Three-dimensional characterization of stress corrosion cracks. J. Nucl. Mater. 408, 289 (2011).
320.Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A.: Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707 (2008).
321.Rauch, E.F., Véron, M., Portillo, J., Bultreys, D., Maniette, Y., and Nicolopoulos, S.: Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Microanal. 22, s5 (2008).
322.Gemma, R., Al-Kassab, T., Kirchheim, R., and Pundt, A.: Studies on hydrogen loaded V-Fe8 at.% films on Al2O3 substrate. J. Alloy. Comp. 446/447, 534 (2007).
323.Gemma, R., Al-Kassab, T., Kirchheim, R., and Pundt, A.: APT analyses of deuterium-loaded Fe/V multi-layered films. Ultramicroscopy 109, 631 (2009).
324.Takahashia, J., Kawakamia, K., Kobayashia, Y., and Taruib, T.: The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr. Mater. 63, 261 (2010).
325.Kihn, Y., Mirguet, C., and Calmels, L.: EELS studies of Ti-bearing materials and ab initio calculations. J. Electron Spectros. Relat. Phenom. 143, 119 (2005).
326.Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
327.Vo, N.Q., Averback, R.S., Bellon, P., and Caro, A.: Limits of hardness at the nanoscale: Molecular dynamics simulations. Phys. Rev. B 78, 241402R (2008).
328.Treacy, M.M.J., Gibson, J.M., Fan, L., Paterson, D.J., and McNulty, I.: Fluctuation microscopy: A probe of medium range order. Rep. Prog. Phys. 68, 2899 (2005).
329.Bunge, H.J. and Schwarzer, R.A.: Orientation stereology—A new branch in texture research. Adv. Eng. Mater. 3, 25 (2001).
330.Larsen, R.J. and Adams, B.L.: New stereology for recovering grain boundary plane distributions in the crystal frame. Mater. Sci. Forum 408412, 125 (2002).
331.Larsen, R.J. and Adams, B.L.: New stereology for the recovery of grain-boundary plane distributions in the crystal frame. Metall. Mater. Trans. A 35A, 1991 (2004).
332.Schuh, C.A. and Frary, M.: Correlations beyond the nearest-neighbor level in grain boundary networks. Scr. Mater. 54, 1023 (2006).
333.Kumar, M., King, W.E., and Schwartz, A.J.: Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Mater. 48, 2081 (2000).
334.Frary, M. and Schuh, C.A.: Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering. Acta Mater. 53, 4323 (2005).
335.Frary, M. and Schuh, C.A.: Connectivity and percolation behaviour of grain boundary networks in three dimensions. Philos. Mag. 85, 1123 (2005).
336.Schuh, C.A., Kumar, M., and King, W.E.: Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51, 687 (2003).
337.Schuh, C.A., Kumar, M., and King, W.E.: Universal features of grain boundary networks in FCC materials. J. Mater. Sci. 40, 847 (2005).
338.Schuh, C.A. and Ying, C.: Diffusion on grain boundary networks: Percolation theory and effective medium approximations. Acta Mater. 54, 4709 (2006).
339.Chen, Y. and Schuh, C.A.: Percolation of diffusional creep: A new universality class. Phys. Rev. Lett. 98, 035701 (2007).
340.Van Siclen, C.D.W.: Intergranular fracture in model polycrystals with correlated distribution of low-angle grain boundaries. Phys. Rev. B 73, 184118 (2006).
341.Bai, X.M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).