Skip to main content Accessibility help
×
Home

Three-dimensional structures of Mn doped CoP on flexible carbon cloth for effective oxygen evolution reaction

  • Jiajin Lin (a1), Shilei Xie (a1), Peng Liu (a1), Min Zhang (a1), Shoushan Wang (a1), Peng Zhang (a1) and Faliang Cheng (a1)...

Abstract

The development of electrocatalysts with high activity and low cost has attracted growing attentions in recent years. Herein, we reported the Mn-doped CoP nanosheet arrays on flexible activated carbon cloth (Mn–CoP/CC) for the effective oxygen evolution reaction (OER) at low overpotential and high current density. Due to the novel 3D nanostructures of the carbon cloth and doping effect of the Mn element, the Mn doped CoP/CC electrode delivered the best overpotential of 317 mV for water splitting with the current density of 10 mA/cm2, a Tafel slope of ∼65.1 mV/dec, and excellent stability over 16 h in 1.0 mol/L KOH, which is superior or comparable to the most of the reported cobalt-based catalysts. Thus outstanding electrocatalytic performance originates from the Mn doping effect, which resulted in increased surface area and fast charge-transfer. It is believed that these findings would help us to develop high effective and stable electrocatalysts for water splitting.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: xieshil@dgut.edu.cn

Footnotes

Hide All

Contributing Editor: Teng Zhai

Footnotes

References

Hide All
1.Chen, S., Duan, J., Jaroniec, M., and Qiao, S.Z.: Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26, 2925 (2014).
2.Lu, X., Xie, S., Yang, H., Tong, Y., and Ji, H.: Photoelectrochemical hydrogen production from biomass derivatives and water. Chem. Soc. Rev. 43, 7581 (2014).
3.Long, X., Li, J., Xiao, S., Yan, K., Wang, Z., Chen, H., and Yang, S.: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. 126, 7714 (2014).
4.Deng, S., Zhong, Y., Zeng, Y., Wang, Y., Yao, Z., Yang, F., Lin, S., Wang, X., Lu, X., and Xia, X.: Directional construction of vertical nitrogen-doped 1T–2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 29, 1700748 (2017).
5.Wang, A-L., Liang, C-L., Lu, X-F., Tong, Y-X., and Li, G-R.: Pt-MoO3-RGO ternary hybrid hollow nanorod arrays as high-performance catalysts for methanol electrooxidation. J. Mater. Chem. A 4, 1923 (2016).
6.Feng, J.X., Xu, H., Dong, Y.T., Lu, X.F., Tong, Y.X., and Li, G.R.: Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. 129, 3006 (2017).
7.Wang, Z., Xiao, S., An, Y., Long, X., Zheng, X., Lu, X., Tong, Y., and Yang, S.: Co(II)1–xCo(0)x/3Mn(III)2x/3S nanoparticles supported on B/N-codoped mesoporous nanocarbon as a bifunctional electrocatalyst of oxygen reduction/evolution for high-performance zinc-air batteries. ACS Appl. Mater. Interfaces 8, 13348 (2016).
8.Wang, Z., Xiao, S., Zhu, Z., Long, X., Zheng, X., Lu, X., and Yang, S.: Cobalt-embedded nitrogen doped carbon nanotubes: A bifunctional catalyst for oxygen electrode reactions in a wide pH range. ACS Appl. Mater. Interfaces 7, 4048 (2015).
9.Xie, S., Wei, W., Huang, S., Li, M., Fang, P., Lu, X., and Tong, Y.: Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst. J. Power Sources 297, 9 (2015).
10.Swesi, A.T., Masud, J., and Nath, M.: Enhancing electrocatalytic activity of bifunctional Ni3Se2 for overall water splitting through etching-induced surface nanostructuring. J. Mater. Res. 31, 2888 (2016).
11.Brillet, J., Cornuz, M., Formal, F.L., Yum, J-H., Grätzel, M., and Sivula, K.: Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting. J. Mater. Res. 25, 17 (2011).
12.Lu, X.F., Gu, L.F., Wang, J.W., Wu, J.X., Liao, P.Q., and Li, G.R.: Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017).
13.Wohlfahrt-Mehrens, M. and Heitbaum, J.: Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 237, 251 (1987).
14.Gottesfeld, S. and Srinivasan, S.: Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction. J. Electroanal. Chem. Interfacial Electrochem. 86, 89 (1978).
15.Browne, M.P., Nolan, H., Twamley, B., Duesberg, G.S., Colavita, P.E., and Lyons, M.E.: Thermally prepared Mn2O3/RuO2/Ru thin films as highly active catalysts for the oxygen evolution reaction in alkaline media. ChemElectroChem 3, 1847 (2016).
16.Han, A., Chen, H., Sun, Z., Xu, J., and Du, P.: High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors. Chem. Commun. 51, 11626 (2015).
17.Mendoza-Garcia, A., Zhu, H., Yu, Y., Li, Q., Zhou, L., Su, D., Kramer, M.J., and Sun, S.: Controlled anisotropic growth of Co–Fe–P from Co–Fe–O nanoparticles. Angew. Chem. 127, 9778 (2015).
18.Li, D., Baydoun, H., Verani, C.N., and Brock, S.L.: Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006 (2016).
19.Chang, J., Xiao, Y., Xiao, M., Ge, J., Liu, C., and Xing, W.: Surface oxidized cobalt-phosphide nanorods as an advanced oxygen evolution catalyst in alkaline solution. ACS Catal. 5, 6874 (2015).
20.Sinnecker, J.P., García, J.M., Asenjo, A., Vázquez, M., and García-Arribas, A.: Giant magnetoimpedance in CoP electrodeposited microtubes. J. Mater. Res. 15, 751 (2011).
21.Yu, M., Zhao, S., Feng, H., Hu, L., Zhang, X., Zeng, Y., Tong, Y., and Lu, X.: Engineering thin MoS2 nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2, 1862 (2017).
22.Wang, A-L., Lin, J., Xu, H., Tong, Y-X., and Li, G-R.: Ni2P-CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. J. Mater. Chem. A 4, 16992 (2016).
23.Hou, C-C., Cao, S., Fu, W-F., and Chen, Y.: Ultrafine CoP nanoparticles supported on carbon nanotubes as highly active electrocatalyst for both oxygen and hydrogen evolution in basic media. ACS Appl. Mater. Interfaces 7, 28412 (2015).
24.Huang, H., Yu, C., Yang, J., Zhao, C., Han, X., Liu, Z., and Qiu, J.: Strongly coupled architectures of cobalt phosphide nanoparticles assembled on graphene as bifunctional electrocatalysts for water splitting. ChemElectroChem 3, 719 (2016).
25.Zeng, Y., Han, Y., Zhao, Y., Zeng, Y., Yu, M., Liu, Y., Tang, H., Tong, Y., and Lu, X.: Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 5, 1402176 (2015).
26.Zhou, W., Hou, D., Sang, Y., Yao, S., Zhou, J., Li, G., Li, L., Liu, H., and Chen, S.: MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2, 11358 (2014).
27.Wang, D-Y., Gong, M., Chou, H-L., Pan, C-J., Chen, H-A., Wu, Y., Lin, M-C., Guan, M., Yang, J., Chen, C-W., Wang, Y-L., Hwang, B-J., Chen, C-C., and Dai, H.: Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 1587 (2015).
28.Gao, W., Yan, M., Cheung, H-Y., Xia, Z., Zhou, X., Qin, Y., Wong, C-Y., Qu, Y., Chang, C-R., and Ho, J.C.: Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 38, 290 (2017).
29.Haynes, W.M.: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Florida, 2014).
30.Zhai, T., Wan, L., Sun, S., Chen, Q., Sun, J., Xia, Q., and Xia, H.: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2016).
31.Tang, C., Zhang, R., Lu, W., He, L., Jiang, X., Asiri, A.M., and Sun, X.: Fe–doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 29, 1602441 (2017).
32.Wu, T., Pi, M., Zhang, D., and Chen, S.: 3D structured porous CoP3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. J. Mater. Chem. A 4, 14539 (2016).
33.Xie, L., Zhang, R., Cui, L., Liu, D., Hao, S., Ma, Y., Du, G., Asiri, A.M., and Sun, X.: High–performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem. 129, 1084 (2017).
34.Liu, M. and Li, J.: Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 8, 2158 (2016).
35.Jiang, N., You, B., Sheng, M., and Sun, Y.: Electrodeposited cobalt–phosphorous–derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. 127, 6349 (2015).
36.Ryu, J., Jung, N., Jang, J.H., Kim, H-J., and Yoo, S.J.: In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co–oxo/hydroxo molecular units. ACS Catal. 5, 4066 (2015).
37.Varcoe, J.R. and Slade, R.C.: An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem. Commun. 8, 839 (2006).
38.Chen, X., Wang, D., Wang, Z., Zhou, P., Wu, Z., and Jiang, F.: Molybdenum phosphide: A new highly efficient catalyst for the electrochemical hydrogen evolution reaction. Chem. Commun. 50, 11683 (2014).
39.Liang, H., Meng, F., Cabán-Acevedo, M., Li, L., Forticaux, A., Xiu, L., Wang, Z., and Jin, S.: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15, 1421 (2015).
40.Masa, J., Xia, W., Sinev, I., Zhao, A., Sun, Z., Grützke, S., Weide, P., Muhler, M., and Schuhmann, W.: MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen–doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 53, 8508 (2014).
41.Meng, Y., Song, W., Huang, H., Ren, Z., Chen, S-Y., and Suib, S.L.: Structure–property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 136, 11452 (2014).
42.Mao, S., Wen, Z., Huang, T., Hou, Y., and Chen, J.: High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ. Sci. 7, 609 (2014).
43.Trotochaud, L., Ranney, J.K., Williams, K.N., and Boettcher, S.W.: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253 (2012).
44.Liang, Y., Wang, H., Zhou, J., Li, Y., Wang, J., Regier, T., and Dai, H.: Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134, 3517 (2012).
45.Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H.: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed