Skip to main content Accessibility help
×
Home

Thin films for superconducting electronics: Precursor performance issues, deposition mechanisms, and superconducting phase formation-processing strategies in the growth of Tl2Ba2CaCu2O8 films by metal-organic chemical vapor deposition

  • Bruce J. Hinds (a1), Richard J. McNeely (a1), Daniel B. Studebaker (a1), Tobin J. Marks (a1), Timothy P. Hogan (a2), Jon L. Schindler (a2), Carl R. Kannewurf (a2), Xiao Feng Zhang (a3) and Dean J. Miller (a3)...

Abstract

Epitaxial Tl2Ba2CaCu2O8 thin films with excellent electrical transport characteristics are grown in a two-step process involving metal-organic chemical vapor deposition (MOCVD) of a BaCaCuO(F) thin film followed by a postanneal in the presence of Tl2O vapor. Vapor pressure characteristics of the recently developed liquid metal-organic precursors Ba(hfa)2 • mep (hfa = hexafluoroacetylacetonate, mep = methylethylpentaglyme), Ca(hfa)2 • tet (tet = tetraglyme), and the solid precursor Cu(dpm)2 (dpm = dipivaloylmethanate) are characterized by low pressure thermogravimetric analysis. Under typical film growth conditions, transport is shown to be diffusion limited. The transport rate of Ba(hfa)2 • mep is demonstrated to be stable for over 85 h at typical MOCVD temperatures (120 °C). In contrast, the vapor pressure stability of the commonly used Ba precursor, Ba(dpm)2, deteriorates rapidly at typical growth temperatures, and the decrease in vapor pressure is approximately exponential with a half-life of ∼9.4 h. These precursors are employed in a low pressure (5 Torr) horizontal, hot-wall, film growth reactor for growth of BaCaCuO(F) thin films on (110) LaAlO3 substrates. From the dependence of film deposition rate on substrate temperature and precursor partial pressure, the kinetics of deposition are shown to be mass-transport limited over the temperature range 350–650 °C at a 20 nm/min deposition rate. A ligand exchange process which yields volatile Cu(hfa)2 and Cu(hfa) (dpm) is also observed under film growth conditions. The MOCVD-derived BaCaCuO(F) films are postannealed in the presence of bulk Tl2Ba2CaCu2O8 at temperatures of 720–890 °C in flowing atmospheres ranging from 0–100% O2. The resulting Tl2Ba2CaCu2O8 films are shown to be epitaxial by x-ray diffraction and transmission electron microscopic (TEM) analysis with the c-axis normal to the substrate surface, with in-plane alignment, and with abrupt film-substrate interfaces. The best films exhibit a Tc = 105 K, transport-measured Jc= 1.2 × 105 A/cm2 at 77 K, and surface resistances as low as 0.4 mΩ (40 K, 10 GHz).

Copyright

References

Hide All
1.Black, R. C., Wellstood, F. C., Dantsker, E., Miklich, A. H., Koelle, D., Ludwig, F., and Clarke, J., IEEE Trans. Appl. Supercond. 5, 21372141 (1995).
2.Lee, L. P., Char, K., Colclough, M. S., and Zaharchuk, G., Appl. Phys. Lett. 59, 30513053 (1991).
3.Koch, R. H., Sun, J. Z., Foglietta, V., and Gallagher, W. J., Appl. Phys. Lett. 67, 709711 (1995).
4.Nordman, J. E., Supercond. Sci. Technol. 8, 681699 (1995).
5.Satchell, J. S., Humphreys, R. G., Edwards, J. A., and Chew, N. G., IEEE Trans. Appl. Supercond. 3, 22732276 (1993).
6.Burns, M. J., Char, K., Cole, B. F., Ruby, W. S., and Sachtjen, S. A., J. Appl. Phys. 75, 14351437 (1992).
7.Wellstood, F. C., Kingston, J. J., and Clarke, J., J. Appl. Phys. 75, 683702 (1994).
8. For recent progress, see High-Temperature Superconducting Detectors: Bolometric and Nonbolometric, edited by Nahum, M. and Villegier, J-C. (SPIE Sympos. Proc. 2159, 1994), pp. 1191.
9.Janik, D., May, D., Wolf, H., and Schneider, R., IEEE Trans. Appl. Supercond. 3, 21482151 (1993).
10. For recent progress, see IEEE Trans. Appl. Supercond.; Vol. 5, edited by A. F. Clark,
11. For recent progress, see High-Tc Microwave Superconductors and Applications, edited by Hammond, R. B. and Withers, R. S. (SPIE Sympos. Proc. 2156, 1994), pp. 1223.
12.Newman, N., Mater. Sci. Forum 130–132, 553578 (1993).
13.Suzuki, K., Fujino, S., Takenaka, T., Yamaguchi, K., Morishita, T., Imai, K., Suginoshita, F., Yazawa, N., and Kobayashi, M., Appl. Supercond. 1, 15751593 (1993).
14.Weigel, R., Valenzuela, A. A., and Russer, P., Appl. Supercond. 1, 15951604 (1993).
15.Liang, G-C., Zhang, D., Shih, C-F., Johansson, M. E., Withers, R. S., Anderson, A. C., and Oates, D. E., IEEE Trans. Appl. Supercond. 5, 26522655 (1995).
16.DeGroot, D. C., Beall, J. A., Marks, R. B., and Rudman, D. A., IEEE Trans. Appl. Supercond. 5, 22722275 (1995).
17.Rauch, W., Gornik, E., Solkner, G., Valenzuela, A. A., Behner, H., and Gieres, G., Appl. Supercond. 2, 417423 (1994).
18.Jing, D., Shao, K., Cao, C. H., Zhang, L. X., Jiao, G., Zhang, Z. J., Li, S. Q., Guo, C. N., Yang, B. C., Wang, X. P., Xiong, G. C., and Lian, Q. J., Supercond. Sci. Technol. 7, 792794 (1994).
19.Kruse, J., Chang, W. H., Scherrer, D., Feng, M., Scharen, M., Cardona, A., and Forse, R., Appl. Phys. Lett. 65, 24782480 (1994).
20.Wu, Z., Supercond. Sci. Technol. 8, 464469 (1995).
21.Maas, S. A., IEEE Trans. Microwave Theory Technol. 39, 14451675 (1991).
22.Sheng, Z. Z. and Hermann, A. M., Nature (London) 332, 138139 (1988).
23.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., IEEE Trans. Appl. Superconductivity 3, 11971200 (1993).
24.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., Appl. Phys. Lett. 60, 20142016 (1992).
25.Hammond, R. B., Negrete, G. V., Bourne, L. C., Strother, D. D., Cardona, A. H., and Eddy, M. M., Appl. Phys. Lett. 57, 825827 (1990).
26.Eddy, M. M., Sun, J. Z., Hammond, R. D., Drabeck, L., Ferreira, I. B., Holczer, K., and Grüner, G., J. Appl. Phys. 70, 496498 (1991).
27.Chang, L. D., Moskowitz, M. J., Hammond, R. B., Eddy, M. M., Olson, W. L., Casavant, D. D., Smith, E. J., Robinson, M., Drabeck, L., and Grüner, G., Appl. Phys. Lett. 55, 13571359 (1989).
28.Subramanyam, G., Kapoor, V. J., Chorey, C. M., and Bhasin, K. B., Appl. Supercond. 1, 16051614 (1993).
29.Huber, S., Manzel, M., Bruchlos, H., Hensen, S., and Müller, G., Physica C 244, 337340 (1995).
30.Subramanyam, G., Kapoor, V. J., Chorey, C. M., and Bhasin, K. B., J. Appl. Phys. 72, 23962403 (1992).
31.Yan, S. L., Fang, L., Si, M. S., Cao, H. L., Song, Q. X., Yan, J., Zhou, X-D., and Hao, J. M., Supercond. Sci. Technol. 7, 681684 (1991).
32.Hamaguchi, N., Boestler, R., Gardiner, R., and Kirlin, P., Physica C 185–189, 20232024 (1991).
33.Hinds, B. J., Schindler, J. L., Han, B., Neumayer, D. A., DeGroot, D. C., Marks, T. J., and Kannewurf, C. R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 273278.
34.Negrete, G. V. and Hammond, R. B., SPIE 1477, 3644 (1991).
35.Wu, S. C., Yeh, C.Y., Chen, F. H., Tseng, T. Y., Wang, C., Chang, H. L., and Wang, H. J., Appl. Phys. Lett. 65, 32813283 (1994).
36.Hermann, A. M., Yandrofski, R. M., Scott, J. F., Naziripour, A., Galt, D., Price, J. C., Cuchario, J., and Ahrenkiel, R. K., J. Supercond. 7, 463469 (1994).
37.Schulz, D. L. and Marks, T. J., Adv. Mater. 6, 719730 (1994).
38.Schulz, D. L. and Marks, T. J., in CVD of Nonmetals, edited by Rees, W. (VCH Publishers, in press).
39.Leskelä, M., Möslä, H., and Niinistö, L., Supercond. Sci. Technol. 6, 627656 (1993).
40.Dahmen, K. H. and Gerfin, T., Prog. in Cryst. Growth and Charact. of Mater. 27, 117161 (1993).
41.Hu, J., Miller, D. J., Schulz, D. L., Han, B., Neumayer, D. A., Hinds, B. J., and Marks, T. J., Physica C 210, 97105 (1993).
42.Hamaguchi, N., Gardiner, R., and Kirlin, P. S., Appl. Surf. Sci. 48/49, 441445 (1991).
43.Ladd, J. A., Collins, B. T., Matey, J. R., Zhao, J., and Norris, P., Appl. Phys. Lett. 59, 13681370 (1991).
44.Schulz, D. L., Richeson, D. S., Malandrino, G., Neumayer, D., Marks, T. J., DeGroot, D. C., Schindler, J. L., Hogan, T., and Kannewurf, C. R., Thin Solid Films 216, 4548 (1992).
45.Malandrino, G., Richeson, D. S., Marks, T. J., DeGroot, D. C., Schindler, J. L., and Kannewurf, C. R., Appl. Phys. Lett. 58, 182184 (1991).
46.Hinds, B. J., Schulz, D. L., Neumayer, D. A., Han, B., Marks, T. J., Wang, Y. Y., Dravid, V. P., Schindler, J. L., Hogan, T. P., and Kannewurf, C. R., Appl. Phys. Lett. 65, 231233 (1994).
47.Koike, S., Nabatame, T., and Hirabayashi, I., Jpn. J. Appl. Phys. Lett. 32, L828–L831 (1993).
48.Richeson, D. S., Tonge, L. M., Wang, X. K., Marcy, H. O., Marks, T. J., Ketterson, J. B., Chang, R. P. H., and Kannewurf, C. R., Appl. Phys. Lett. 55, 27782780 (1989).
49.Scheel, H. J., Berkowski, M., and Chabot, B., J. Cryst. Growth 115, 1930 (1991).
50.Hitchman, M. L., Shamlian, S. H., Gilliland, D. D., Cole-Hamilton, D. J., Thompson, S. C., Cook, S. L., and Richards, B. C., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 249260.
51. I. M.Watson, Atwood, M. P., and Haq, S., Supercond. Sci. Technol. 7, 672680 (1994).
52.Chou, K. S. and Tsai, G. J., Thermochimica Acta 240, 129139 (1994).
53.Tobaly, P. and Lanchec, G., J. Chem. Thermodyn. 25, 503510 (1993).
54.Sato, R., Tkahashi, K., Yoshino, M., Kato, H., and Ohshima, S., Jpn. J. Appl. Phys. 32, 15901594 (1993).
55.Hashimoto, T., Koinuma, H., Nakabayashi, M., Shiraishi, T., Suemune, Y., and Yamamoto, T., J. Mater. Res. 7, 13361340 (1992).
56.Thompson, S. C., Cole-Hamilton, D. J., Gilliland, D. D., Hitchman, M. L., and Barnes, J. C., Adv. Mater. Opt. Electron. 1, 8197 (1992).
57.Turnipseed, S. B., Barkley, R. M., and Seivers, R. E., Inorg. Chem. 30, 1164 (1991).
58.Busch, H., Fink, A, Müller, A, and Samwer, K., Supercond. Sci. Technol. 6, 4245 (1993).
59.Drake, S. R., Hursthouse, M. B., Malik, K. M. A., and Otway, D. J., J. Chem. Soc. Dalton Trans., 28832890 (1993).
60.Timmer, K., Spee, C. I. M. A., Mackor, A., Meinema, H. A., Spek, A. L., and Sluis, P. v. d., Inorg. Chim. Acta 190, 109117 (1991).
61.Gardiner, R., Brown, D. W., Kirlin, P. S., and Rheingold, A. L., Chem. Mater. 3, 10531059 (1991).
62.Schmaderer, F., Hubre, R., Oetzmann, H., and Wahl, G., in 11th Int. Conf. of CVD, edited by Spear, K. E. and Cullen, G. W. (ECS, Pennington, NJ, 1990), pp. 211218.
63.Schmaderer, F., Huber, R., Oetzmann, H., and Wahl, G., Appl. Surf. Sci. 46, 5360 (1990).
64.Neumayer, D. A., Studebaker, D. B., Hinds, B. J., Stern, C. L., and Marks, T. J., Chem. Mater. 6, 878880 (1994).
65.Schulz, D. L., Neumayer, D. A., and Marks, T. J., Inorg. Synth. 31, 1 (1997).
66.Rossetto, G., Polo, A., Benetollo, F., Porchia, M., and Zanella, P., Polyhedron 11, 979985 (1992).
67.Moffat, H. and Jenson, K. F., J. Cryst. Growth 77, 108 (1986).
68.Lyding, L. W., Marcy, H. O., Marks, T. J., and Kannewurf, C. R., IEEE Trans. Instrum. Meas. 37, 7680 (1988).
69.Schindler, J. L., Ph.D. Thesis, Northwestern University (1995).
70.Taber, R. C., Rev. Sci. Instrum. 61, 22002206 (1990).
71.Degroot, D. C., Hogan, T. P., Kannewurf, C. R., Buchholz, D. B., Chang, R. P. H., Gao, F., Feng, M., and Nordin, R. A., Physica C 222, 271277 (1994).
72.Skelland, A. H. P., Diffusional Mass Transfer (John Wiley & Sons, New York, 1974), pp. 221225.
73.Jensen, K. F., in Chemical Vapor Deposition: Principle and Application, edited by Hitchman, M. L. and Jensen, K. F. (Academic Press, London, 1993), pp. 3190.
74.Stringfellow, G. B., Organometallic Vapor-Phase Epitaxy (Academic Press Inc., New York, 1989), pp. 265284.
75.Kern, W. S. and Ban, V. S., in Thin Film Processes, edited by Vossen, J. L. and Kern, W. S. (Academic Press, San Diego, 1978), pp. 257331.
76.Zhang, K. and Erbil, A., in Materials Science Forum, edited by Pouch, J. J., Alterovitz, S. A., Romanofsky, R. R., and Hepp, A. F., (Aedermannsdorf, Switzerland, 1993), Vols. 130–132, pp. 255268.
77.Pinkas, J., Huffman, J. C., Baxter, D. V., Chrisholm, M. H., and Caulton, K. G., Chem. Mater. 7, 15891596 (1995).
78.Kaloyeros, A. E., Zheng, B., Lou, I., Lau, J., and Hellgeth, J. W., Thin Solid Films 262, 2030 (1995).
79.Lecohier, B., Calpini, J. B., Philippoz, J-M., and Bergh, H. v. d., J. Appl. Phys. 72, 20222026 (1992).
80.Rousseau, F., Jain, A., Kodas, T. T., Hampden-Smith, M. J., Farr, J. D., and Muenchausen, R. J., J. Mater. Chem. 2, 893894 (1992).
81.Jain, A., Kodas, T. T., and Hampden-Smith, M. J., Thin Solid Films 269, 5156 (1995).
82.Wang, T. and Uden, P. C., J. Chromatography 517, 185192 (1990).
83. Joint Committee for Powder Diffraction Standards (JCPDS), Center for Diffraction Data, 1601 Park Lane, Swathmore, PA 19081, No. 4–452 (BaF2), No. 5–661 (CuO), No. 34–0282 (CaCu2O3).
84.Cubicciotti, D. and Eding, H., J. Chem. Eng. Data 10, 343345 (1967).
85.Keneshea, F. and Cubicciotti, D., J. Phys. Chem. 71, 1958 (1967).
86.Holstein, W. L., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 165170.
87.Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).
88.DeGroot, D. C., Hogan, T. P., Kannewurf, C. R., Buchholz, D. B., Chang, R. P. H., Gao, F., Feng, M., and Nordin, R. A., Physica C 222, 271277 (1994).
89.DiMeo, F. Jr, Wessels, B. W., Neumayer, D. A., Marks, T. J., Schindler, J. L., and Kannewurf, C. R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 285290.
90.Richards, B. C., Cook, S. L., Pinch, D. L., Andrews, G. W., Lengeling, G., Schulte, B., Jürgensen, H., Shen, Y. Q., Vase, P., Freltoft, T., Spee, C. I. M. A., Linden, J. L., Hitchman, M. L., Shamlian, S. H., and Brown, A., Physica C 252, 229236 (1995).
91.Mizushima, Y. and Hirabayashi, I., Physica C 235–240, 577578 (1994).
92.Shamlian, S. H., Hitchman, M. L., Cook, S. L., and Richards, B. C., J. Mater. Chem. 4, 8185 (1994).
93.Rosenblatt, G. M., in Treatise on Solid State Chemistry, edited by Hannay, N. B. (Plenum Press, New York, 1976), Vol. 6A, pp. 165240.
94.Langmuir, I., Phys. Rev. II, 329 (1913).
95.Santiso, J. and Figueras, A., J. Phys. IV 3, 353360 (1993).
96.Takahashi, Y., Matsuzaki, K., Iijima, M., Fukada, E., Tsukahara, S., Murakami, Y., and Maesono, A., Jpn. J. Appl. Phys. 32, L875–L878 (1993).
97.Fedotova, N. E., Igumenov, I. K., Mamatyuk, V. I., and Sidorenko, G. V., J. Phys. IV 5, 431438 (1995).
98.Hannay, N. B., Treatise on Solid State Chemistry Volume 6A Surfaces (Plenum Press, New York, 1976).
99.Lin, W., Warren, T. H., Nuzo, R. G., and Girolami, G. S., J. Am. Chem. Soc. 115, 11644–11 645 (1993).
100.Aselage, T. L., Venturini, E. L., and Deusen, S. B. v., J. Appl. Phys. 75, 10231031 (1994).
101.Face, D. W. and Nestlerode, J. P., Appl. Phys. Lett. 61, 18381840 (1992).
102.Takahashi, N., Koukitu, A., Seki, H., and Kamioka, Y., Jpn. J. Appl. Phys. Lett. 33, L840–L842 (1994).
103.Sugise, R., Hirabayashi, M., Terada, N., Jo, M., Kawashima, F., and Ihara, H., Jpn. J. Appl. Phys. Lett. 27, L2314–L2316 (1988).
104.Lee, W. Y., Garrison, S. M., Kawasaki, M., Venturini, E. L., Ahn, B. T., Boyers, R., Salem, J., Savoy, R., and Vazquez, J., Appl. Phys. Lett. 60, 772774 (1992).
105.Yan, S. L., Fang, L., Si, M. S., Cao, H. L., Song, Q. X., Yan, J., Zhou, X. D., and Hao, J. M., Supercond. Sci. Technol. 7, 681684 (1994).
106.Yan, S. L., Fang, L., Song, Q. X., Yan, J., Zhu, Y. P., Chen, J. H., and Zhang, S. B., Appl. Phys. Lett. 63, 18451847 (1993).
107.Nanjundaswamy, K. S., Manthiram, A., and Goodenough, J. B., Physica C 207, 339346 (1993).
108.Ginley, D. S., Kwak, J. F., Venturini, E. L., Morosin, B., and Baughman, R. J., Physica C 160, 4248 (1989).
109.Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 5, 245250 (1990).
110.Morgan, P. E. D., Housely, R. M., Porter, J. R., and Ratto, J. J., Physica C 176, 279284 (1992).
111.Nabatame, T., Saito, Y., Aihara, K., Kamo, T., and Matsuda, S-P., Jpn. J. Appl. Phys. 29, L1813–L1815 (1990).
112.Chrzanowski, J., Burany, X. M., Curzon, A. E., Irwin, J. C., Heinrich, B., Fortier, N., and Cragg, A., Physica C 207, 2536 (1993).
113.Holstein, W. L., Wilder, C., Laubacher, D. B., Face, D. W., Pang, P., Warrington, M. S., Carter, C. F., and Parisi, L. A., J. Appl. Phys. 74, 14261430 (1993).

Thin films for superconducting electronics: Precursor performance issues, deposition mechanisms, and superconducting phase formation-processing strategies in the growth of Tl2Ba2CaCu2O8 films by metal-organic chemical vapor deposition

  • Bruce J. Hinds (a1), Richard J. McNeely (a1), Daniel B. Studebaker (a1), Tobin J. Marks (a1), Timothy P. Hogan (a2), Jon L. Schindler (a2), Carl R. Kannewurf (a2), Xiao Feng Zhang (a3) and Dean J. Miller (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed