Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T04:46:15.927Z Has data issue: false hasContentIssue false

Thin films for superconducting electronics: Precursor performance issues, deposition mechanisms, and superconducting phase formation-processing strategies in the growth of Tl2Ba2CaCu2O8 films by metal-organic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Bruce J. Hinds
Affiliation:
Department of Chemistry and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Richard J. McNeely
Affiliation:
Department of Chemistry and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Daniel B. Studebaker
Affiliation:
Department of Chemistry and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Tobin J. Marks
Affiliation:
Department of Chemistry and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Timothy P. Hogan
Affiliation:
Department of Electrical Engineering and Computer Science and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Jon L. Schindler
Affiliation:
Department of Electrical Engineering and Computer Science and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Carl R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science and the Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Xiao Feng Zhang
Affiliation:
Materials Science Division and the Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
Dean J. Miller
Affiliation:
Materials Science Division and the Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Epitaxial Tl2Ba2CaCu2O8 thin films with excellent electrical transport characteristics are grown in a two-step process involving metal-organic chemical vapor deposition (MOCVD) of a BaCaCuO(F) thin film followed by a postanneal in the presence of Tl2O vapor. Vapor pressure characteristics of the recently developed liquid metal-organic precursors Ba(hfa)2 • mep (hfa = hexafluoroacetylacetonate, mep = methylethylpentaglyme), Ca(hfa)2 • tet (tet = tetraglyme), and the solid precursor Cu(dpm)2 (dpm = dipivaloylmethanate) are characterized by low pressure thermogravimetric analysis. Under typical film growth conditions, transport is shown to be diffusion limited. The transport rate of Ba(hfa)2 • mep is demonstrated to be stable for over 85 h at typical MOCVD temperatures (120 °C). In contrast, the vapor pressure stability of the commonly used Ba precursor, Ba(dpm)2, deteriorates rapidly at typical growth temperatures, and the decrease in vapor pressure is approximately exponential with a half-life of ∼9.4 h. These precursors are employed in a low pressure (5 Torr) horizontal, hot-wall, film growth reactor for growth of BaCaCuO(F) thin films on (110) LaAlO3 substrates. From the dependence of film deposition rate on substrate temperature and precursor partial pressure, the kinetics of deposition are shown to be mass-transport limited over the temperature range 350–650 °C at a 20 nm/min deposition rate. A ligand exchange process which yields volatile Cu(hfa)2 and Cu(hfa) (dpm) is also observed under film growth conditions. The MOCVD-derived BaCaCuO(F) films are postannealed in the presence of bulk Tl2Ba2CaCu2O8 at temperatures of 720–890 °C in flowing atmospheres ranging from 0–100% O2. The resulting Tl2Ba2CaCu2O8 films are shown to be epitaxial by x-ray diffraction and transmission electron microscopic (TEM) analysis with the c-axis normal to the substrate surface, with in-plane alignment, and with abrupt film-substrate interfaces. The best films exhibit a Tc = 105 K, transport-measured Jc= 1.2 × 105 A/cm2 at 77 K, and surface resistances as low as 0.4 mΩ (40 K, 10 GHz).

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Black, R. C., Wellstood, F. C., Dantsker, E., Miklich, A. H., Koelle, D., Ludwig, F., and Clarke, J., IEEE Trans. Appl. Supercond. 5, 21372141 (1995).CrossRefGoogle Scholar
2.Lee, L. P., Char, K., Colclough, M. S., and Zaharchuk, G., Appl. Phys. Lett. 59, 30513053 (1991).CrossRefGoogle Scholar
3.Koch, R. H., Sun, J. Z., Foglietta, V., and Gallagher, W. J., Appl. Phys. Lett. 67, 709711 (1995).CrossRefGoogle Scholar
4.Nordman, J. E., Supercond. Sci. Technol. 8, 681699 (1995).CrossRefGoogle Scholar
5.Satchell, J. S., Humphreys, R. G., Edwards, J. A., and Chew, N. G., IEEE Trans. Appl. Supercond. 3, 22732276 (1993).CrossRefGoogle Scholar
6.Burns, M. J., Char, K., Cole, B. F., Ruby, W. S., and Sachtjen, S. A., J. Appl. Phys. 75, 14351437 (1992).Google Scholar
7.Wellstood, F. C., Kingston, J. J., and Clarke, J., J. Appl. Phys. 75, 683702 (1994).CrossRefGoogle Scholar
8. For recent progress, see High-Temperature Superconducting Detectors: Bolometric and Nonbolometric, edited by Nahum, M. and Villegier, J-C. (SPIE Sympos. Proc. 2159, 1994), pp. 1191.Google Scholar
9.Janik, D., May, D., Wolf, H., and Schneider, R., IEEE Trans. Appl. Supercond. 3, 21482151 (1993).CrossRefGoogle Scholar
10. For recent progress, see IEEE Trans. Appl. Supercond.; Vol. 5, edited by A. F. Clark,Google Scholar
11. For recent progress, see High-Tc Microwave Superconductors and Applications, edited by Hammond, R. B. and Withers, R. S. (SPIE Sympos. Proc. 2156, 1994), pp. 1223.Google Scholar
12.Newman, N., Mater. Sci. Forum 130–132, 553578 (1993).CrossRefGoogle Scholar
13.Suzuki, K., Fujino, S., Takenaka, T., Yamaguchi, K., Morishita, T., Imai, K., Suginoshita, F., Yazawa, N., and Kobayashi, M., Appl. Supercond. 1, 15751593 (1993).CrossRefGoogle Scholar
14.Weigel, R., Valenzuela, A. A., and Russer, P., Appl. Supercond. 1, 15951604 (1993).CrossRefGoogle Scholar
15.Liang, G-C., Zhang, D., Shih, C-F., Johansson, M. E., Withers, R. S., Anderson, A. C., and Oates, D. E., IEEE Trans. Appl. Supercond. 5, 26522655 (1995).CrossRefGoogle Scholar
16.DeGroot, D. C., Beall, J. A., Marks, R. B., and Rudman, D. A., IEEE Trans. Appl. Supercond. 5, 22722275 (1995).CrossRefGoogle Scholar
17.Rauch, W., Gornik, E., Solkner, G., Valenzuela, A. A., Behner, H., and Gieres, G., Appl. Supercond. 2, 417423 (1994).CrossRefGoogle Scholar
18.Jing, D., Shao, K., Cao, C. H., Zhang, L. X., Jiao, G., Zhang, Z. J., Li, S. Q., Guo, C. N., Yang, B. C., Wang, X. P., Xiong, G. C., and Lian, Q. J., Supercond. Sci. Technol. 7, 792794 (1994).CrossRefGoogle Scholar
19.Kruse, J., Chang, W. H., Scherrer, D., Feng, M., Scharen, M., Cardona, A., and Forse, R., Appl. Phys. Lett. 65, 24782480 (1994).CrossRefGoogle Scholar
20.Wu, Z., Supercond. Sci. Technol. 8, 464469 (1995).CrossRefGoogle Scholar
21.Maas, S. A., IEEE Trans. Microwave Theory Technol. 39, 14451675 (1991).Google Scholar
22.Sheng, Z. Z. and Hermann, A. M., Nature (London) 332, 138139 (1988).CrossRefGoogle Scholar
23.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., IEEE Trans. Appl. Superconductivity 3, 11971200 (1993).CrossRefGoogle Scholar
24.Holstein, W. L., Parisi, L. A., Wilker, C., and Flippen, R. B., Appl. Phys. Lett. 60, 20142016 (1992).CrossRefGoogle Scholar
25.Hammond, R. B., Negrete, G. V., Bourne, L. C., Strother, D. D., Cardona, A. H., and Eddy, M. M., Appl. Phys. Lett. 57, 825827 (1990).CrossRefGoogle Scholar
26.Eddy, M. M., Sun, J. Z., Hammond, R. D., Drabeck, L., Ferreira, I. B., Holczer, K., and Grüner, G., J. Appl. Phys. 70, 496498 (1991).CrossRefGoogle Scholar
27.Chang, L. D., Moskowitz, M. J., Hammond, R. B., Eddy, M. M., Olson, W. L., Casavant, D. D., Smith, E. J., Robinson, M., Drabeck, L., and Grüner, G., Appl. Phys. Lett. 55, 13571359 (1989).CrossRefGoogle Scholar
28.Subramanyam, G., Kapoor, V. J., Chorey, C. M., and Bhasin, K. B., Appl. Supercond. 1, 16051614 (1993).CrossRefGoogle Scholar
29.Huber, S., Manzel, M., Bruchlos, H., Hensen, S., and Müller, G., Physica C 244, 337340 (1995).CrossRefGoogle Scholar
30.Subramanyam, G., Kapoor, V. J., Chorey, C. M., and Bhasin, K. B., J. Appl. Phys. 72, 23962403 (1992).CrossRefGoogle Scholar
31.Yan, S. L., Fang, L., Si, M. S., Cao, H. L., Song, Q. X., Yan, J., Zhou, X-D., and Hao, J. M., Supercond. Sci. Technol. 7, 681684 (1991).CrossRefGoogle Scholar
32.Hamaguchi, N., Boestler, R., Gardiner, R., and Kirlin, P., Physica C 185–189, 20232024 (1991).CrossRefGoogle Scholar
33.Hinds, B. J., Schindler, J. L., Han, B., Neumayer, D. A., DeGroot, D. C., Marks, T. J., and Kannewurf, C. R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 273278.Google Scholar
34.Negrete, G. V. and Hammond, R. B., SPIE 1477, 3644 (1991).Google Scholar
35.Wu, S. C., Yeh, C.Y., Chen, F. H., Tseng, T. Y., Wang, C., Chang, H. L., and Wang, H. J., Appl. Phys. Lett. 65, 32813283 (1994).CrossRefGoogle Scholar
36.Hermann, A. M., Yandrofski, R. M., Scott, J. F., Naziripour, A., Galt, D., Price, J. C., Cuchario, J., and Ahrenkiel, R. K., J. Supercond. 7, 463469 (1994).CrossRefGoogle Scholar
37.Schulz, D. L. and Marks, T. J., Adv. Mater. 6, 719730 (1994).CrossRefGoogle Scholar
38.Schulz, D. L. and Marks, T. J., in CVD of Nonmetals, edited by Rees, W. (VCH Publishers, in press).Google Scholar
39.Leskelä, M., Möslä, H., and Niinistö, L., Supercond. Sci. Technol. 6, 627656 (1993).CrossRefGoogle Scholar
40.Dahmen, K. H. and Gerfin, T., Prog. in Cryst. Growth and Charact. of Mater. 27, 117161 (1993).CrossRefGoogle Scholar
41.Hu, J., Miller, D. J., Schulz, D. L., Han, B., Neumayer, D. A., Hinds, B. J., and Marks, T. J., Physica C 210, 97105 (1993).CrossRefGoogle Scholar
42.Hamaguchi, N., Gardiner, R., and Kirlin, P. S., Appl. Surf. Sci. 48/49, 441445 (1991).CrossRefGoogle Scholar
43.Ladd, J. A., Collins, B. T., Matey, J. R., Zhao, J., and Norris, P., Appl. Phys. Lett. 59, 13681370 (1991).CrossRefGoogle Scholar
44.Schulz, D. L., Richeson, D. S., Malandrino, G., Neumayer, D., Marks, T. J., DeGroot, D. C., Schindler, J. L., Hogan, T., and Kannewurf, C. R., Thin Solid Films 216, 4548 (1992).CrossRefGoogle Scholar
45.Malandrino, G., Richeson, D. S., Marks, T. J., DeGroot, D. C., Schindler, J. L., and Kannewurf, C. R., Appl. Phys. Lett. 58, 182184 (1991).CrossRefGoogle Scholar
46.Hinds, B. J., Schulz, D. L., Neumayer, D. A., Han, B., Marks, T. J., Wang, Y. Y., Dravid, V. P., Schindler, J. L., Hogan, T. P., and Kannewurf, C. R., Appl. Phys. Lett. 65, 231233 (1994).CrossRefGoogle Scholar
47.Koike, S., Nabatame, T., and Hirabayashi, I., Jpn. J. Appl. Phys. Lett. 32, L828–L831 (1993).CrossRefGoogle Scholar
48.Richeson, D. S., Tonge, L. M., Wang, X. K., Marcy, H. O., Marks, T. J., Ketterson, J. B., Chang, R. P. H., and Kannewurf, C. R., Appl. Phys. Lett. 55, 27782780 (1989).CrossRefGoogle Scholar
49.Scheel, H. J., Berkowski, M., and Chabot, B., J. Cryst. Growth 115, 1930 (1991).CrossRefGoogle Scholar
50.Hitchman, M. L., Shamlian, S. H., Gilliland, D. D., Cole-Hamilton, D. J., Thompson, S. C., Cook, S. L., and Richards, B. C., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 249260.Google Scholar
51. I. M.Watson, Atwood, M. P., and Haq, S., Supercond. Sci. Technol. 7, 672680 (1994).Google Scholar
52.Chou, K. S. and Tsai, G. J., Thermochimica Acta 240, 129139 (1994).CrossRefGoogle Scholar
53.Tobaly, P. and Lanchec, G., J. Chem. Thermodyn. 25, 503510 (1993).CrossRefGoogle Scholar
54.Sato, R., Tkahashi, K., Yoshino, M., Kato, H., and Ohshima, S., Jpn. J. Appl. Phys. 32, 15901594 (1993).CrossRefGoogle Scholar
55.Hashimoto, T., Koinuma, H., Nakabayashi, M., Shiraishi, T., Suemune, Y., and Yamamoto, T., J. Mater. Res. 7, 13361340 (1992).CrossRefGoogle Scholar
56.Thompson, S. C., Cole-Hamilton, D. J., Gilliland, D. D., Hitchman, M. L., and Barnes, J. C., Adv. Mater. Opt. Electron. 1, 8197 (1992).CrossRefGoogle Scholar
57.Turnipseed, S. B., Barkley, R. M., and Seivers, R. E., Inorg. Chem. 30, 1164 (1991).CrossRefGoogle Scholar
58.Busch, H., Fink, A, Müller, A, and Samwer, K., Supercond. Sci. Technol. 6, 4245 (1993).CrossRefGoogle Scholar
59.Drake, S. R., Hursthouse, M. B., Malik, K. M. A., and Otway, D. J., J. Chem. Soc. Dalton Trans., 28832890 (1993).CrossRefGoogle Scholar
60.Timmer, K., Spee, C. I. M. A., Mackor, A., Meinema, H. A., Spek, A. L., and Sluis, P. v. d., Inorg. Chim. Acta 190, 109117 (1991).CrossRefGoogle Scholar
61.Gardiner, R., Brown, D. W., Kirlin, P. S., and Rheingold, A. L., Chem. Mater. 3, 10531059 (1991).CrossRefGoogle Scholar
62.Schmaderer, F., Hubre, R., Oetzmann, H., and Wahl, G., in 11th Int. Conf. of CVD, edited by Spear, K. E. and Cullen, G. W. (ECS, Pennington, NJ, 1990), pp. 211218.Google Scholar
63.Schmaderer, F., Huber, R., Oetzmann, H., and Wahl, G., Appl. Surf. Sci. 46, 5360 (1990).CrossRefGoogle Scholar
64.Neumayer, D. A., Studebaker, D. B., Hinds, B. J., Stern, C. L., and Marks, T. J., Chem. Mater. 6, 878880 (1994).CrossRefGoogle Scholar
65.Schulz, D. L., Neumayer, D. A., and Marks, T. J., Inorg. Synth. 31, 1 (1997).Google Scholar
66.Rossetto, G., Polo, A., Benetollo, F., Porchia, M., and Zanella, P., Polyhedron 11, 979985 (1992).CrossRefGoogle Scholar
67.Moffat, H. and Jenson, K. F., J. Cryst. Growth 77, 108 (1986).CrossRefGoogle Scholar
68.Lyding, L. W., Marcy, H. O., Marks, T. J., and Kannewurf, C. R., IEEE Trans. Instrum. Meas. 37, 7680 (1988).CrossRefGoogle Scholar
69.Schindler, J. L., Ph.D. Thesis, Northwestern University (1995).Google Scholar
70.Taber, R. C., Rev. Sci. Instrum. 61, 22002206 (1990).CrossRefGoogle Scholar
71.Degroot, D. C., Hogan, T. P., Kannewurf, C. R., Buchholz, D. B., Chang, R. P. H., Gao, F., Feng, M., and Nordin, R. A., Physica C 222, 271277 (1994).CrossRefGoogle Scholar
72.Skelland, A. H. P., Diffusional Mass Transfer (John Wiley & Sons, New York, 1974), pp. 221225.Google Scholar
73.Jensen, K. F., in Chemical Vapor Deposition: Principle and Application, edited by Hitchman, M. L. and Jensen, K. F. (Academic Press, London, 1993), pp. 3190.Google Scholar
74.Stringfellow, G. B., Organometallic Vapor-Phase Epitaxy (Academic Press Inc., New York, 1989), pp. 265284.Google Scholar
75.Kern, W. S. and Ban, V. S., in Thin Film Processes, edited by Vossen, J. L. and Kern, W. S. (Academic Press, San Diego, 1978), pp. 257331.CrossRefGoogle Scholar
76.Zhang, K. and Erbil, A., in Materials Science Forum, edited by Pouch, J. J., Alterovitz, S. A., Romanofsky, R. R., and Hepp, A. F., (Aedermannsdorf, Switzerland, 1993), Vols. 130–132, pp. 255268.Google Scholar
77.Pinkas, J., Huffman, J. C., Baxter, D. V., Chrisholm, M. H., and Caulton, K. G., Chem. Mater. 7, 15891596 (1995).CrossRefGoogle Scholar
78.Kaloyeros, A. E., Zheng, B., Lou, I., Lau, J., and Hellgeth, J. W., Thin Solid Films 262, 2030 (1995).CrossRefGoogle Scholar
79.Lecohier, B., Calpini, J. B., Philippoz, J-M., and Bergh, H. v. d., J. Appl. Phys. 72, 20222026 (1992).CrossRefGoogle Scholar
80.Rousseau, F., Jain, A., Kodas, T. T., Hampden-Smith, M. J., Farr, J. D., and Muenchausen, R. J., J. Mater. Chem. 2, 893894 (1992).CrossRefGoogle Scholar
81.Jain, A., Kodas, T. T., and Hampden-Smith, M. J., Thin Solid Films 269, 5156 (1995).CrossRefGoogle Scholar
82.Wang, T. and Uden, P. C., J. Chromatography 517, 185192 (1990).CrossRefGoogle Scholar
83. Joint Committee for Powder Diffraction Standards (JCPDS), Center for Diffraction Data, 1601 Park Lane, Swathmore, PA 19081, No. 4–452 (BaF2), No. 5–661 (CuO), No. 34–0282 (CaCu2O3).Google Scholar
84.Cubicciotti, D. and Eding, H., J. Chem. Eng. Data 10, 343345 (1967).Google Scholar
85.Keneshea, F. and Cubicciotti, D., J. Phys. Chem. 71, 1958 (1967).CrossRefGoogle Scholar
86.Holstein, W. L., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 165170.Google Scholar
87.Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
88.DeGroot, D. C., Hogan, T. P., Kannewurf, C. R., Buchholz, D. B., Chang, R. P. H., Gao, F., Feng, M., and Nordin, R. A., Physica C 222, 271277 (1994).CrossRefGoogle Scholar
89.DiMeo, F. Jr, Wessels, B. W., Neumayer, D. A., Marks, T. J., Schindler, J. L., and Kannewurf, C. R., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), pp. 285290.Google Scholar
90.Richards, B. C., Cook, S. L., Pinch, D. L., Andrews, G. W., Lengeling, G., Schulte, B., Jürgensen, H., Shen, Y. Q., Vase, P., Freltoft, T., Spee, C. I. M. A., Linden, J. L., Hitchman, M. L., Shamlian, S. H., and Brown, A., Physica C 252, 229236 (1995).CrossRefGoogle Scholar
91.Mizushima, Y. and Hirabayashi, I., Physica C 235–240, 577578 (1994).CrossRefGoogle Scholar
92.Shamlian, S. H., Hitchman, M. L., Cook, S. L., and Richards, B. C., J. Mater. Chem. 4, 8185 (1994).CrossRefGoogle Scholar
93.Rosenblatt, G. M., in Treatise on Solid State Chemistry, edited by Hannay, N. B. (Plenum Press, New York, 1976), Vol. 6A, pp. 165240.CrossRefGoogle Scholar
94.Langmuir, I., Phys. Rev. II, 329 (1913).CrossRefGoogle Scholar
95.Santiso, J. and Figueras, A., J. Phys. IV 3, 353360 (1993).Google Scholar
96.Takahashi, Y., Matsuzaki, K., Iijima, M., Fukada, E., Tsukahara, S., Murakami, Y., and Maesono, A., Jpn. J. Appl. Phys. 32, L875–L878 (1993).CrossRefGoogle Scholar
97.Fedotova, N. E., Igumenov, I. K., Mamatyuk, V. I., and Sidorenko, G. V., J. Phys. IV 5, 431438 (1995).Google Scholar
98.Hannay, N. B., Treatise on Solid State Chemistry Volume 6A Surfaces (Plenum Press, New York, 1976).Google Scholar
99.Lin, W., Warren, T. H., Nuzo, R. G., and Girolami, G. S., J. Am. Chem. Soc. 115, 11644–11 645 (1993).Google Scholar
100.Aselage, T. L., Venturini, E. L., and Deusen, S. B. v., J. Appl. Phys. 75, 10231031 (1994).CrossRefGoogle Scholar
101.Face, D. W. and Nestlerode, J. P., Appl. Phys. Lett. 61, 18381840 (1992).CrossRefGoogle Scholar
102.Takahashi, N., Koukitu, A., Seki, H., and Kamioka, Y., Jpn. J. Appl. Phys. Lett. 33, L840–L842 (1994).CrossRefGoogle Scholar
103.Sugise, R., Hirabayashi, M., Terada, N., Jo, M., Kawashima, F., and Ihara, H., Jpn. J. Appl. Phys. Lett. 27, L2314–L2316 (1988).CrossRefGoogle Scholar
104.Lee, W. Y., Garrison, S. M., Kawasaki, M., Venturini, E. L., Ahn, B. T., Boyers, R., Salem, J., Savoy, R., and Vazquez, J., Appl. Phys. Lett. 60, 772774 (1992).CrossRefGoogle Scholar
105.Yan, S. L., Fang, L., Si, M. S., Cao, H. L., Song, Q. X., Yan, J., Zhou, X. D., and Hao, J. M., Supercond. Sci. Technol. 7, 681684 (1994).CrossRefGoogle Scholar
106.Yan, S. L., Fang, L., Song, Q. X., Yan, J., Zhu, Y. P., Chen, J. H., and Zhang, S. B., Appl. Phys. Lett. 63, 18451847 (1993).CrossRefGoogle Scholar
107.Nanjundaswamy, K. S., Manthiram, A., and Goodenough, J. B., Physica C 207, 339346 (1993).CrossRefGoogle Scholar
108.Ginley, D. S., Kwak, J. F., Venturini, E. L., Morosin, B., and Baughman, R. J., Physica C 160, 4248 (1989).CrossRefGoogle Scholar
109.Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 5, 245250 (1990).CrossRefGoogle Scholar
110.Morgan, P. E. D., Housely, R. M., Porter, J. R., and Ratto, J. J., Physica C 176, 279284 (1992).CrossRefGoogle Scholar
111.Nabatame, T., Saito, Y., Aihara, K., Kamo, T., and Matsuda, S-P., Jpn. J. Appl. Phys. 29, L1813–L1815 (1990).CrossRefGoogle Scholar
112.Chrzanowski, J., Burany, X. M., Curzon, A. E., Irwin, J. C., Heinrich, B., Fortier, N., and Cragg, A., Physica C 207, 2536 (1993).CrossRefGoogle Scholar
113.Holstein, W. L., Wilder, C., Laubacher, D. B., Face, D. W., Pang, P., Warrington, M. S., Carter, C. F., and Parisi, L. A., J. Appl. Phys. 74, 14261430 (1993).CrossRefGoogle Scholar