Skip to main content Accessibility help
×
Home

Thin film cathodes in SOFC research: How to identify oxygen reduction pathways?

  • Alexander K. Opitz (a1), Markus Kubicek (a1), Stefanie Huber (a1), Tobias Huber (a1), Gerald Holzlechner (a1), Herbert Hutter (a1) and Jürgen Fleig (a1)...

Abstract

The considerable potential of model-type thin film electrodes for the investigation of oxygen exchange pathways is demonstrated for different electrode materials on yttria-stabilized zirconia (YSZ). In particular, a correlation of voltage-driven 18O tracer experiments and electrical ac and dc measurements has proven to be helpful when aiming at mechanistic conclusions. For Pt electrodes, two different parallel reaction pathways can be identified under equilibrium conditions. At lower temperatures, a diffusion limited path through the electrode is dominant, whereas at higher temperatures, an electrode surface path with oxygen incorporation at the three-phase boundary determines the electrochemical activity. In addition, for high cathodic polarization, an electrolyte surface path with electron transfer via YSZ outperforms both other pathways. The oxygen incorporation zones of the bulk path as well as the electrolyte surface path can be visualized by 18O tracer incorporation experiments in combination with time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis. A successful separation of surface and bulk path can also be obtained for La0.8Sr0.2MnO3−δ (LSM) electrodes by means of 18O tracer incorporation at different cathodic overpotentials. Under lower polarization, a surface path with oxygen incorporation at the three-phase boundary is dominant, whereas at higher cathodic overpotential, the bulk path becomes significantly more pronounced. These changes are discussed in terms of polarization-induced changes of the ionic conductivity in the LSM electrode. Measurements on the acceptor-doped perovskite-type materials La0.6Sr0.4CoO3−δ (LSC) and La0.6Sr0.4FeO3−δ (LSF) illustrate the limitations of the tracer incorporation method. In the case of highly active LSC electrodes with low polarization resistances, the tracer distribution is determined by the electrolyte, and thus the active sites of the electrodes can no longer be visualized. The effect of polarization-induced changes of the electrode's electronic conductivity is demonstrated for LSF. Only a region close to the current collector remains electrochemically active owing to limited lateral electron transport.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: alexander.opitz@tuwien.ac.at

References

Hide All
1.Hamann, C.H., Hamnett, A., and Vielstich, W.: Electrochemistry, 2nd ed. (Wiley-VCH, Weinheim, 2007).
2.Fleig, J.: Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance. Annu. Rev. Mater. Res. 33, 361 (2003).
3.Fleig, J.: On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes. J. Power Sources 105(2), 228 (2002).
4.Janek, J., Luerßen, B., Mutoro, E., Fischer, H., and Günther, S.: In situ imaging of electrode processes on solid electrolytes by photoelectron microscopy and microspectroscopy - the role of the three-phase boundary. Top. Catal. 44(3), 399 (2007).
5.Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104(10), 4791 (2004).
6.Beck, G., Fischer, H., Mutoro, E., Srot, V., Petrikowski, K., Tchernychova, E., Wuttig, M., Ruhle, M., Luerßen, B., and Janek, J.: Epitaxial Pt(111) thin film electrodes on YSZ(111) and YSZ(100) - preparation and characterisation. Solid State Ionics 178(5–6), 327 (2007).
7.Radhakrishnan, R., Virkar, A.V., and Singhal, S.C.: Estimation of charge-transfer resistivity of Pt cathode on YSZ electrolyte using patterned electrodes. J. Electrochem. Soc. 152(5), A927 (2005).
8.Chueh, W.C., Lai, W., and Haile, S.M.: Electrochemical behavior of ceria with selected metal electrodes. Solid State Ionics 179(21–26), 1036 (2008).
9.Jamnik, J. and Maier, J.: Treatment of the impedance of mixed conductors equivalent circuit model and explicit approximate solutions. J. Electrochem. Soc. 146(11), 4183 (1999).
10.Jamnik, J. and Maier, J.: Generalised equivalent circuits for mass and charge transport: Chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3(9), 1668 (2001).
11.Baumann, F.S., Fleig, J., Habermeier, H.U., and Maier, J.: Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-delta model electrodes. Solid State Ionics 177(11–12), 1071 (2006).
12.Wang, L., Merkle, R., and Maier, J.: Surface kinetics and mechanism of oxygen incorporation into Ba1-xSrxCoyFe1-yO3-δ SOFC microelectrodes. J. Electrochem. Soc. 157(12), B1802 (2010).
13.Van Herle, J. and McEvoy, A.J.: Oxygen diffusion through silver cathodes for solid oxide fuel cells. J. Phys. Chem. Solids 55(4), 339 (1994).
14.Wang, D.Y. and Nowick, A.S.: Cathodic and anodic polarization phenomena at platinum electrodes with doped CeO2 as electrolyte - II. J. Electrochem. Soc. 126(7), 1166 (1979).
15.Wang, D.Y. and Nowick, A.S.: Cathodic and anodic polarization phenomena at platinum electrodes with doped CeO2 as electrolyte - I. J. Electrochem. Soc. 126(7), 1155 (1979).
16.Kenjo, T. and Shiroichi, N.: Separation of the polarization of a two-electron transfer reaction into those of consecutive one-electron transfer reactions by potential-step chronoamperometry in the oxidation of O2- ion by Pt/YSZ oxygen electrodes. Electrochim. Acta 42(23–24), 3461 (1997).
17.Mitterdorfer, A. and Gauckler, L.J.: Reaction kinetics of the Pt, O2(g)c-ZrO2 system: Precursor-mediated adsorption. Solid State Ionics 120(1–4), 211 (1999).
18.Robertson, N.L. and Michaels, J.N.: Oxygen-exchange on platinum-electrodes in zirconia cells - location of electrochemical reaction sites. J. Electrochem. Soc. 137(1), 129 (1990).
19.Verkerk, M.J., Hammink, M.W.J., and Burggraaf, A.J.: Oxygen transfer on substituted ZrO2, Bi2O3, and CeO2 electrolytes with platinum electrodes. J. Electrochem. Soc. 130(1), 70 (1983).
20.Mizusaki, J., Amano, K., Yamauchi, S., and Fueki, K.: Electrode-reaction at Pt, O2(G)/stabilized zirconia interfaces. 2. Electrochemical measurements and analysis. Solid State Ionics 22(4), 323 (1987).
21.van der Haar, L.M., den Otter, M.W., Morskate, M., Bouwmeester, H.J.M., and Verweij, H.: Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-δ studied with electrical conductivity relaxation. J. Electrochem. Soc. 149(3), J41 (2002).
22.De Souza, R.A. and Kilner, J.A.: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion. Solid State Ionics 106(3–4), 175 (1998).
23.De Souza, R.A. and Kilner, J.A.: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites: Part II. Oxygen surface exchange. Solid State Ionics 126(1–2), 153 (1999).
24.Sitte, W., Bucher, E., and Preis, W.: Nonstoichiometry and transport properties of strontium-substituted lanthanum cobaltites. Solid State Ionics 154155(0), 517 (2002).
25.van Doorn, R.E., Fullarton, I.C., de Souza, R.A., Kilner, J.A., Bouwmeester, H.J.M., and Burggraaf, A.J.: Surface oxygen exchange of La0.3Sr0.7CoO3-δ. Solid State Ionics 96(1–2), 1 (1997).
26.Brichzin, V., Fleig, J., Habermeier, H-U., Cristiani, G., and Maier, J.: The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia. Solid State Ionics 152153, 499 (2002).
27.la O’, G.J., Yildiz, B., McEuen, S., and Shao-Horn, Y.: Probing oxygen reduction reaction kinetics of Sr-doped LaMnO3 supported on Y2O3-Stabilized ZrO2: EIS of dense, thin-film microelectrodes. J. Electrochem. Soc. 154(4), B427 (2007).
28.Yan, L. and Salvador, P.A.: Substrate and thickness effects on the oxygen surface exchange of La0.7Sr0.3MnO3 thin films. ACS Appl. Mater. Interfaces 4(5), 2541 (2012).
29.la O’, G.J., Savinell, R.F., and Shao-Horn, Y.: Activity enhancement of dense strontium-doped lanthanum manganite thin films under cathodic polarization: A combined AES and XPS study. J. Electrochem. Soc. 156(6), B771 (2009).
30.Bieberle, A., Meier, L.P., and Gauckler, L.J.: The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes. J. Electrochem. Soc. 148(6), A646 (2001).
31.Fleig, J.: Microelectrodes in solid state ionics. Solid State Ionics. 161(3–4), 279 (2003).
32.Hertz, J., Rothschild, A., and Tuller, H.: Highly enhanced electrochemical performance of silicon-free platinum/yttria stabilized zirconia interfaces. J. Electroceram. 22(4), 428 (2009).
33.Jung, W. and Tuller, H.L.: Investigation of cathode behavior of model thin-film SrTi1-xFexO3−δ (x = 0.35 and 0.5) mixed ionic-electronic conducting electrodes. J. Electrochem. Soc. 155(11), B1194 (2008).
34.Mutoro, E., Luerßen, B., Günther, S., and Janek, J.: The electrode model system Pt(O2)YSZ: Influence of impurities and electrode morphology on cyclic voltammograms. Solid State Ionics 180(17–19), 1019 (2009).
35.Mutoro, E., Luerßen, B., Günther, S., and Janek, J.: Structural, morphological and kinetic properties of model type thin film platinum electrodes on YSZ. Solid State Ionics 179(21–26), 1214 (2008).
36.Opitz, A.K. and Fleig, J.: Investigation of O2 reduction on Pt/YSZ by means of thin film microelectrodes: The geometry dependence of the electrode impedance. Solid State Ionics 181(15–16), 684 (2010).
37.Pöpke, H., Mutoro, E., Luerßen, B., and Janek, J.: Oxygen reduction and oxidation at epitaxial model-type Pt(O2)/YSZ electrodes – on the role of PtOx formation on activation, passivation, and charge transfer. Catal. Today 202, 12 (2012).
38.Pöpke, H., Mutoro, E., Luerßen, B., and Janek, J.: Oxidation of platinum in the epitaxial model system Pt(111)/YSZ(111): Quantitative analysis of an electrochemically driven PtOx formation. J. Phys. Chem. C 116(2), 1912 (2011).
39.Fleig, J., Baumann, F.S., Brichzin, V., Kim, H-R., Jamnik, J., Cristiani, G., Habermeier, H-U., and Maier, J.: Thin film microelectrodes in SOFC electrode research. Fuel Cells 6(3–4), 284 (2006).
40.Horita, T., Yamaji, K., Sakai, N., Xiong, Y., Kato, T., Yokokawa, H., and Kawada, T.: Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique. J. Power Sources 106(1–2), 224 (2002).
41.Horita, T., Yamaji, K., Sakai, N., Yokokawa, H., and Kato, T.: Oxygen transport at the LaMnO3 film/yttria-stabilized zirconia interface under different cathodic overpotentials by secondary ion mass spectrometry. J. Electrochem. Soc. 148(5), J25 (2001).
42.Horita, T., Yamaji, K., Sakai, N., Yokokawa, H., Kawada, T., and Kato, T.: Oxygen reduction sites and diffusion paths at La0.9Sr0.1MnO3-x/yttria-stabilized zirconia interface for different cathodic overvoltages by secondary-ion mass spectrometry. Solid State Ionics 127(1–2), 55 (2000).
43.Kawada, T., Horita, T., Sakai, N., Yokokawa, H., Dokiya, M., and Mizusaki, J.: A novel technique for imaging electrochemical reaction sites on a solid oxide electrolyte. Solid State Ionics 131(1–2), 199 (2000).
44.Kishimoto, H., Sakai, N., Yamaji, K., Horita, T., Brito, M.E., Yokokawa, H., Amezawa, K., and Uchimoto, Y.: Visualization of oxygen transport behavior at metal electrode/oxide electrolyte interface using secondary ion mass spectrometry. Solid State Ionics 179(9–10), 347 (2008).
45.Opitz, A.K., Schintlmeister, A., Hutter, H., and Fleig, J.: Visualization of oxygen reduction sites at Pt electrodes on YSZ by means of 18O tracer incorporation: The width of the electrochemically active zone. Phys. Chem. Chem. Phys. 12, 12734 (2010).
46.Fleig, J., Schintlmeister, A., Opitz, A., and Hutter, H.: The determination of the three-phase boundary width of solid oxide fuel cell cathodes by current-driven 18O tracer incorporation. Scr. Mater. 65, 78 (2011).
47.Fleig, J.: Voltage-assisted O-18 tracer incorporation into oxides for obtaining shallow diffusion profiles and for measuring ionic transference numbers: Basic considerations. Phys. Chem. Chem. Phys. 11(17), 3144 (2009).
48.Minh, N.Q.: Solid oxide fuel cell technology - features and applications. Solid State Ionics 174(1–4), 271 (2004).
49.Wilson, J.R., Duong, A.T., Gameiro, M., Chen, H-Y., Thornton, K., Mumm, D.R., and Barnett, S.A.: Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem. Commun. 11(5), 1052 (2009).
50.Søgaard, M., Hendriksen, P.V., Mogensen, M., Poulsen, F.W., and Skou, E.: Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum cobaltite. Solid State Ionics 177(37–38), 3285 (2006).
51.Kuhn, M., Hashimoto, S., Sato, K., Yashiro, K., and Mizusaki, J.: Oxygen nonstoichiometry and thermo-chemical stability of La0.6Sr0.4CoO3−δ. J. Solid State Chem. 197(0), 38 (2013).
52.Januschewsky, J., Ahrens, M., Opitz, A., Kubel, F., and Fleig, J.: Optimized La0.6Sr0.4CoO3-δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv. Funct. Mater. 19, 3151 (2009).
53.Hayd, J., Dieterle, L., Guntow, U., Gerthsen, D., and Ivers-Tiffée, E.: Nanoscaled La0.6Sr0.4CoO3−δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance. J. Power Sources 196(17), 7263 (2011).
54.Baumann, F.S., Fleig, J., Cristiani, G., Stuhlhofer, B., Habermeier, H-U., and Maier, J.: Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes. J. Electrochem. Soc. 154(9), B931 (2007).
55.Kuhn, M., Hashimoto, S., Sato, K., Yashiro, K., and Mizusaki, J.: Oxygen nonstoichiometry, thermo-chemical stability and lattice expansion of La0.6Sr0.4FeO3-δ. Solid State Ionics 195(1), 7 (2011).
56.Opitz, A.K., Lutz, A., Kubicek, M., Kubel, F., Hutter, H., and Fleig, J.: Investigation of the oxygen exchange mechanism on Pt/YSZ at intermediate temperatures: Surface path versus bulk path. Electrochim. Acta 56(27), 9727 (2011).
57.Ehn, A., Høgh, J., Graczyk, M., Norrman, K., Montelius, L., Linne, M., and Mogensen, M.: Electrochemical investigation of nickel pattern electrodes in H2/H2O and CO/CO2 atmospheres. J. Electrochem. Soc. 157(11), B1588 (2010).
58.Kubicek, M., Limbeck, A., Fromling, T., Hutter, H., and Fleig, J.: Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-delta thin film electrodes. J. Electrochem. Soc. 158(6), B727 (2011).
59.Holzlechner, G., Kubicek, M., Hutter, H., and Fleig, J.: A novel ToF-SIMS operation mode for improved accuracy and lateral resolution of oxygen isotope measurements on oxides. J. Anal. At. Spectrom. 28, 1080 (2013).
60.Kubicek, M., Holzlechner, G., Opitz, A.K., Larisegger, S., Hutter, H., and Fleig, J.: A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance. Appl. Surf. Sci. (submitted, 2013).
61.De Souza, R.A., Zehnpfenning, J., Martin, M., and Maier, J.: Determining oxygen isotope profiles in oxides with time-of-flight SIMS. Solid State Ionics 176(15–16), 1465 (2005).
62.Sakaguchi, I. and Haneda, H.: Oxygen tracer diffusion in single-crystal CaTiO3. J. Solid State Chem. 124(1), 195 (1996).
63.Newman, J.: Resistance for flow of current to a disk. J. Electrochem. Soc. 113(5), 501 (1966).
64.Opitz, A.K., Horlein, M.P., Huber, T., and Fleig, J.: Current-voltage characteristics of platinum model electrodes on yttria-stabilized zirconia. J. Electrochem. Soc. 159(5), B502 (2012).
65.Hoerlein, M.P., Opitz, A.K., and Fleig, J.: On the variability of oxygen exchange kinetics of platinum model electrodes on yttria stabilized zirconia. Solid State Ionics 247248, 56 (2013).
66.de Ridder, M., Vervoort, A.G.J., van Welzenis, R.G., and Brongersma, H.H.: The limiting factor for oxygen exchange at the surface of fuel cell electrolytes. Solid State Ionics 156(3–4), 255 (2003).
67.de Ridder, M., Welzenis, R.G.v., Gon, A.W.D.v.d., Brongersma, H.H., Wulff, S., Chu, W-F., and Weppner, W.: Subsurface segregation of yttria in yttria stabilized zirconia. J. Appl. Phys. 92(6), 3056 (2002).
68.Jensen, K.V., Wallenberg, R., Chorkendorff, I., and Mogensen, M.: Effect of impurities on structural and electrochemical properties of the Ni-YSZ interface. Solid State Ionics 160(1–2), 27 (2003).
69.Mogensen, M., Jensen, K.V., Jørgensen, M.J., and Primdahl, S.: Progress in understanding SOFC electrodes. Solid State Ionics 150(1–2), 123 (2002).
70.Nielsen, J. and Jacobsen, T.: Three-phase-boundary dynamics at Pt/YSZ microelectrodes. Solid State Ionics 178(13–14), 1001 (2007).
71.Mutoro, E., Baumann, N., and Janek, J.: Janus-faced SiO2: Activation and passivation in the electrode system platinum/yttria-stabilized zirconia. J. Phys. Chem. Lett. 1, 2322 (2010).
72.Janek, J. and Korte, C.: Electrochemical blackening of yttria-stabilized zirconia - morphological instability of the moving reaction front. Solid State Ionics 116(3–4), 181 (1999).
73.Maier, J.: Stationary polarization state: Wagner-Hebb analysis and a simple correction procedure, in Physical Chemistry of Ionic Materials - Ions and Electrons in Solids (John Wiley & Sons, Ltd., Chichester, 2004), pp. 454.
74.Park, J.H. and Blumenthal, R.N.: Electronic transport in 8 mole percent Y2O3-ZrO2. J. Electrochem. Soc. 136(10), 2867 (1989).
75.Heyne, L. and Beekman, N.M.: Electronic transport in calcia-stabilized zirconia. Proc. Br. Ceram. Soc. 19, 229 (1971).
76.Schmiedl, R., Demuth, V., Lahnor, P., Godehardt, H., Bodschwinna, Y., Harder, C., Hammer, L., Strunk, H.P., Schulz, M., and Heinz, K.: Oxygen diffusion through thin Pt films on Si(100). Appl. Phys. A 62(3), 223 (1996).
77.Stumpf, R., Liu, C-L., and Tracy, C.: Reduced oxygen diffusion through beryllium doped platinum electrodes. Appl. Phys. Lett. 75(10), 1389 (1999).
78.Kilner, J., Skinner, S., and Brongersma, H.: The isotope exchange depth profiling (IEDP) technique using SIMS and LEIS. J. Solid State Electrochem. 15(5), 861 (2011).
79.Kawada, T., Masuda, K., Suzuki, J., Kaimai, A., Kawamura, K., Nigara, Y., Mizusaki, J., Yugami, H., Arashi, H., Sakai, N., and Yokokawa, H.: Oxygen isotope exchange with a dense La0.6Sr0.4CoO3−δ electrode on a Ce0.9Ca0.1O1.9 electrolyte. Solid State Ionics 121(1–4), 271 (1999).
80.Newman, J.: Current distribution on a rotating disk below the limiting current. J. Electrochem. Soc. 113(12), 1235 (1966).
81.Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., and Poeppelmeier, K.R.: Electron/hole and ion transport in La1−xSrxFeO3−δ. J. Solid State Chem. 172(1), 219 (2003).
82.van Heuveln, F.H., Bouwmeester, H.J.M., and van Berkel, F.P.F.: Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia: I. Three-phase boundary area. J. Electrochem. Soc. 144(1), 126 (1997).
83.Jiang, S.P.: A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics 146(1–2), 1 (2002).
84.Huber, T., Kubicek, M., Opitz, A.K., Holzlechner, G., Navickas, E., Hutter, H., and Fleig, J.: (in preparation).

Keywords

Related content

Powered by UNSILO

Thin film cathodes in SOFC research: How to identify oxygen reduction pathways?

  • Alexander K. Opitz (a1), Markus Kubicek (a1), Stefanie Huber (a1), Tobias Huber (a1), Gerald Holzlechner (a1), Herbert Hutter (a1) and Jürgen Fleig (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.