Skip to main content Accessibility help
×
Home

Thermomechanical effects on phase transformations in single-crystal Cu–Al–Ni shape-memory alloy

  • H.-S. Zhang (a1) and K. Komvopoulos (a1)

Abstract

Single-crystal rods of Cu–Al–Ni shape-memory alloy fabricated from a molten pool of 82 wt% Cu, 14 wt% Al, and 4 wt% Ni by the Czochralski method were first heated to ∼870 °C and then quenched to obtain austenitic microstructures. Various microanalysis techniques were used to determine the chemical composition, microstructure, and phase-transformation temperatures of the produced alloy. Cyclic tensile tests with in situ temperature control demonstrated the occurrence of pseudoelastic deformation at elevated and close to phase-transformation temperatures and provided insight into the temperature dependence of the phase-transformation stress, damping characteristics, and cyclic straining of single-crystal Cu–Al–Ni alloy. The stress hysteresis observed in the pseudoelastic deformation cycles decreased at elevated temperatures. The stress response at different temperatures is associated with the formation, growth, and coalescence of martensite variants. Stress-induced phase-transformation mechanisms, coalescence of twin variants, and energy dissipation by pseudoelastic deformation are discussed in the context of experimental findings. The results illustrate the potential of single-crystal Cu–Al–Ni as a structural material for dynamic microsystems and temperature sensors.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: kyriakos@me.berkeley.edu

References

Hide All
1Fremond, M. and Miyazaki, S.: Shape Memory Alloys (Springer, New York, 1996).
2Funakubo, H.: Shape Memory Alloys translated from the Japanese by J.B. Kennedy (Gordon and Breach Science Publishers, New York, 1987).
3Otsuka, K., Sakamoto, H., and Shimizu, K.: Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu–Al–Ni alloys. Acta Metall. 27, 585 (1979).
4Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, Cambridge, 1998).
5Otsuka, K., Sakamoto, H., and Shimizu, K.: Two stage superelasticity associated with successive martensite-to-martensite transformations. Scripta Metall. 10, 983 (1976).
6Liu, Y., Xie, Z.L., Van Humbeeck, J., and Delaey, L.: Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta Mater. 47, 645 (1999).
7Sehitoglu, H., Jun, J., Zhang, X., Karaman, I., Chumlyakov, Y., Maier, H.J., and Gall, K.: Shape memory and pseudoelastic behavior of 51.5%Ni–Ti single crystals in solutionized and overaged state. Acta Mater. 49, 3609 (2001).
8Sehitoglu, H., Karaman, I., Anderson, R., Zhang, X., Gall, K., Maier, H.J., and Chumlyakov, Y.: Compressive response of NiTi single crystals. Acta Mater. 48, 3311 (2000).
9Huang, W.: On the selection of shape memory alloys for actuators. Mater. Des. 23, 11 (2002).
10Šittner, P., Hashimoto, K., Kato, M., and Tokuda, M.: Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube. Scripta Mater. 48, 1153 (2003).
11Zhang, X., Sun, Q., and Yu, S.: A non-invariant plane model for the interface in CuAlNi single crystal shape memory alloys. J. Mech. Phys. Solids 48, 2163 (2000).
12Sittner, P., Novák, V., and Zárubová, N.: Deformation by moving interfaces from single crystal experiments to the modeling of industrial SMA. Int. J. Mech. Sci. 40, 159 (1998).
13Šittner, P. and Novák, V.: Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int. J. Plast. 16, 1243 (2000).
14Otsuka, K., Sakamoto, H., and Shimizu, K.: Martensitic transformations between martensites in a Cu–Al–Ni alloy. Scripta Metall. 9, 491 (1975).
15Novák, V., Malimánek, J., and Zárubová, N.: Martensitic transformations in single crystals of Cu–Al–Ni induced by tensile stress. Mater. Sci. Eng. A 191, 193 (1995).
16Duggin, M.J. and Rachinger, W.A.: The nature of the martensite transformation in a copper–nickel–aluminium alloy. Acta Metall. 12, 529 (1964).
17Brezina, P.: Heat treatment of complex aluminium bronzes. Int. Metals Rev. 27, 77 (1982).
18Chen, C.H. and Liu, T.F.: Phase transformations in a Cu–14.2Al–15.0Ni alloy. Mater. Chem. Phys. 78, 464 (2002).
19Zárubová, N., Gemperle, A., and Novák, V.: Initial stages of γ2 precipitation in an aged Cu–Al–Ni shape memory alloy. Mater. Sci. Eng. A 222, 166 (1997).
20Tan, J. and Liu, T.F.: As-quenched microstructures of Cu–14.2Al–xNi alloys. Scripta Mater. 43, 1083 (2000).
21Chen, C.H. and Liu, T.F.: Phase transformations in a Cu–14.2Al–12.0Ni alloy. Scripta Mater. 47, 515 (2002).
22Tanner, L.E., Pelton, A.R., and Gronsky, R.: The characterization of pretransformation morphologies: Periodic strain modulations. J. Phys. 43(C4, 12), 169 (1982).
23Pelosin, V., Gerland, M., Covarel, G., and Riviève, A.: First stages of martensitic growth studied by TEM in a Cu–Al–Ni single crystal and associated mechanical spectroscopy instabilities. Eur. Phys. J. App. Phys. 16, 175 (2001).
24Gall, K., Sehitoglu, H., Chumlyakov, Y.I., and Kireeva, I.V.: Tension-compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater. 47, 1203 (1999).
25Gastien, R., Corbellani, C.E., Sade, M., and Lovey, F.C.: Thermodynamical aspects of martensitic transformations in CuAlNi single crystals. Scripta Mater. 50, 1103 (2004).
26Duerig, T.W., Melton, K.N., Stöckel, D., and Wayman, C.M.: Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, London, 1990).
27Font, J., Cesari, E., Muntasell, J., and Pons, J.: Thermomechanical cycling in Cu–Al–Ni-based melt-spun shape-memory ribbons. Mater. Sci. Eng. A 354, 207 (2003).
28Picornell, C., Pons, J., and Cesari, E.: Stress-temperature relationship in Cu–Al–Ni single crystals in compression mode. Mater. Sci. Eng. A 378, 222 (2004).
29Picornell, C., Pons, J., and Cesari, E.: Stabilisation of martensite by applying compressive stress in Cu–Al–Ni single crystals. Acta Mater. 49, 4221 (2001).
30Abdullah, N., Kastner, O., Müller, I., Musolff, A., Xu, H., and Zak, G.: Observations on CuAlNi single crystals. Int. J. Non-Linear Mech. 37, 1263 (2002).
31Aydogdu, Y., Aydogdu, A., and Adiguzel, O.: Self-accommodating martensite plate variants in shape memory CuAlNi alloys. J. Mater. Proc. Technol. 123, 498 (2002).
32Fang, D.-N., Lu, W., and Hwang, K.-C.: Pseudoelastic behavior of a CuAlNi single crystal under uniaxial loading. Metall. Mater. Trans. A 30A, 1933 (1999).
33Hamilton, R.F., Sehitoglu, H., Chumlyakov, Y., and Maier, H.J.: Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 52, 3383 (2004).
34Zhang, S. and McCormick, P.G.: Thermodynamic analysis of shape memory phenomena—I. Effect of transformation plasticity on elastic strain energy. Acta Mater. 48, 3081 (2000).

Keywords

Related content

Powered by UNSILO

Thermomechanical effects on phase transformations in single-crystal Cu–Al–Ni shape-memory alloy

  • H.-S. Zhang (a1) and K. Komvopoulos (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.