Skip to main content Accessibility help
×
Home

Thermomechanical behavior at the nanoscale and size effects in shape memory alloys

  • Jose San Juan (a1), Maria L. Nó (a2) and Christopher A. Schuh (a3)

Abstract

Shape memory alloys (SMA) undergo reversible martensitic transformation in response to changes in temperature or applied stress, resulting in the properties of superelasticity and shape memory. At present, there is high scientific and technological interest to develop these properties at small scales and apply SMA as sensors and actuators in microelectromechanical system technologies. To study the thermomechanical properties of SMA at micro and nanoscales, instrumented nanoindentation is widely used to conduct nanopillar compression tests. By using this technique, superelasticity and shape memory at the nanoscale have been demonstrated in micro and nanopillars of Cu–Al–Ni SMA. However, the martensitic transformation seems to exhibit different behavior at small scales, and a size effect on superelasticity has been recently reported. In this study, we provide an overview of the thermomechanical properties of Cu–Al–Ni SMA at the nanoscale, with special emphasis on size effects. Finally, these size effects are discussed in light of the microscopic mechanisms controlling the martensitic transformation at the nanoscale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Thermomechanical behavior at the nanoscale and size effects in shape memory alloys
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Thermomechanical behavior at the nanoscale and size effects in shape memory alloys
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Thermomechanical behavior at the nanoscale and size effects in shape memory alloys
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: jose.sanjuan@ehu.es

References

Hide All
1.Liu, C.: Foundations of MEMS (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).
2.Worden, K., Bullongh, W.A., and Hayvood, J. (Eds.): Smart Technologies (World Scientific, NJ, 2003).
3.Kohl, M.: Shape Memory Microactuators. (Springer-Verlag, Berlin, 2004).
4.Bhattacharya, K. and James, R.D.: The material is the machine. Science 307, 53 (2005).
5.Humbeeck, J.V.: Shape memory alloys: A material and a technology. Adv. Eng. Mater. 3, 837 (2001).
6.Otsuka, K. and Wayman, C.M. (Eds.): Shape Memory Materials. (Cambridge Univ. Press, Cambridge, 1998).
7.Romig, A.D., Dugger, M.T., and McWhorther, P.J.: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability. Acta Mater. 51, 5837 (2003).
8.Karoub, J.: MEMS reliability key to acceptance. Smalltimes 4, 23 (2004).
9.Tanner, D.M., Parson, T.B., Corwin, A.D., Walraven, J.A., Wittwer, J.W., Boyce, B.L., and Winzer, S.R.: Science-based MEMS reliability methodology. Microelectron. Reliab. 47, 1806 (2007).
10.San Juan, J. and , M.L.: Damping behavior during martensitic transformation in shape memory alloys. J. Alloy. Comp. 355, 65 (2003).
11.Waitz, T., Kazykhanov, V., and Karnthaler, H.P.: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, 137 (2004).
12.Fu, Y.Q., Zhang, S., Wu, M.J., Huang, W.M., Du, H.J., Luo, J.K., Flewitt, A.J., and Milne, W.I.: On the lower thickness boundary of sputtered TiNi films for shape memory application. Thin Solid Films 515, 80 (2006).
13.Waitz, T., Tsuchiya, K., Antretter, T., and Fischer, F.D.: Phase transformations of nanocrystalline martensitic materials. MRS Bull. 34, 814 (2009).
14.Ibarra, A., Caillard, D., San Juan, J., and , M.L.: Martensite nucleation on dislocations in Cu-Al-Ni shape memory alloys. Appl. Phys. Lett. 90, 101907 (2007).
15., M.L., Ibarra, A., Caillard, D., and San Juan, J.: Stress-induced phase transformations studied by in-situ transmission electron microscopy. J. of Phys. Conf. Ser. 240, 012002 (2010).
16., M.L., Ibarra, A., Caillard, D., and San Juan, J.: Quantitative analysis of stress-induced martensites by in-situ transmission electron microscopy superelastic tests in Cu-Al-Ni shape memory alloys. Acta Mater. 58, 6181 (2010).
17.Miyazaki, S., Fu, Y.K., and Huang, W.M. (Eds.): Thin Film Shape Memory Alloys. (Cambridge University Press, Cambridge, 2009).
18.Fischer-Cripps, A.C.: Nanoindentation. (Springer, New York, 2004).
19.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).
20.Ni, W., Cheng, Y.T., and Grummon, D.S.: Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions. Appl. Phys. Lett. 82, 2811 (2003).
21.Ma, X.G. and Komvopoulos, K.: Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 83, 3773 (2003).
22.Shaw, G.A., Stone, D.D., Johnson, A.D., Ellis, A.B., and Crone, W.C.: Shape memory effect in nanoindentation of nickel–titanium thin films. Appl. Phys. Lett. 83, 257 (2003).
23.Ma, X.G. and Komvopoulos, K.: Pseudoelasticity of shape-memory titanium-nickel films subjected to dynamic nanoindentation. Appl. Phys. Lett. 84, 4274 (2004).
24.Komvopoulos, K. and Ma, X.G.: Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).
25.Shaw, G.A., Trethewey, J.S., Johnson, A.D., Drugan, W.J., and Crone, W.C.: Thermomechanical high-density data storage in a metallic material via the shape-memory effect. Adv. Mater. 17, 1123 (2005).
26.Liu, C., Zhao, Y., Sun, Q., Yu, T., and Cao, Z.: Characteristic of microscopic shape memory effect in CuAlNi alloy by nanoindentation. J. Mater. Sci. 40, 1501 (2005).
27.Rajagopalan, S., Little, A.L., Bourke, M.A.M., and Vaidyanathan, R.: Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented nanoindentation, and extensometry. Appl. Phys. Lett. 86, 081901 (2005).
28.Frick, C.P., Lang, T.W., Spark, K., and Gall, K.: Stress-induced martensite transformations and shape memory at nanometer scales. Acta Mater. 54, 2223 (2006).
29.Muir Wood, A.J. and Clyne, T.W.: Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Mater. 54, 5607 (2006).
30.Zhang, H.S. and Komvopoulos, K.: Nanoscale pseudoelasticity of single-crystal Cu-Al-Ni shape-memory alloys induced by cyclic nanoindentation. J. Mater. Sci. 41, 5021 (2006).
31.Zhang, Y., Cheng, Y.T., and Grummon, D.S.: Shape memory surfaces. Appl. Phys. Lett. 89, 041912 (2006).
32.Crone, W.C., Brock, H., and Creuziger, A.: Nanoindentation and microindentation of CuAlNi shape memory alloy. Exp. Mech. 47, 133 (2007).
33.Muir Wood, A.J., Sanjabi, S., Fu, Y.Q., Barber, Z.H., and Clyne, T.W.: Nanoindentation of binary and ternary Ni-Ti-based shape memory alloy thin films. Surf. Coat. Tech. 202, 3115 (2008).
34.Cole, D.P., Bruck, H.A., and Roytburd, A.L.: Nanoidentation studies of graded shape memory alloy thin films processed using diffusion modification. J. Appl. Phys. 103, 064315 (2008).
35.Zheng, H., Rao, J., Pfetzing, J., Frenzel, J., Somsen, C., and Eggeler, G.: TEM observation of stress-induced martensite after nanoindentation of pseudoelastic Ti50Ni48Fe2. Scr. Mater. 58, 743 (2008).
36.Dwivedi, A., Wyrobek, T., Warren, O.L., Hattrick-Simpers, J., Famodu, O.O., and Takeuchi, I.: High-throughput screening of shape memory alloy thin-film spreads using nanoindentation. J. Appl. Phys. 104, 073501 (2008).
37.Cole, D.P., Jin, H., Lu, W.Y., Roytburd, A.L., and Bruck, H.A.: Reversible nanoscale deformation in compositionally graded shape memory alloy films. Appl. Phys. Lett. 94, 193114 (2009).
38.Pfetzing-Micklich, J., Wagner, M.F.X., Zarnetta, R., Frenzel, J., Eggeler, G., Markaki, A.E., Wheeler, J., and Clyne, T.W.: Nanoindentation of a pseudoelastic NiTiFe shape memory alloy. Adv. Eng. Mater. 12, 13 (2010).
39.Huang, X., San Juan, J., and Ramirez, A.G.: Evolution of phase transformation behavior and mechanical properties with crystallization in NiTi thin films. Scr. Mater. 63, 16 (2010).
40.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science. 305, 986 (2004).
41.Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
42.Frick, C.P., Orso, S., and Arzt, E.: Loss of superelasticity in nickel-titanium sub-micron compression pillars. Acta Mater. 55, 3845 (2007).
43.San Juan, J., , M.L., and Schuh, C.A.: Superelasticity and shape memory in microand nanometer-scale pillars. Adv. Mater. 20, 272 (2008).
44.Frick, C.P., Clark, B.G., Orso, S., Ribic, P.S., and Arzt, E.: Orientation-independent pseudoelasticity in small-scale NiTi compression pillars. Scr. Mater. 59, 7 (2008).
45.Norfleet, D.M., Sarosi, P.M., Manchiraju, S., Wagner, M.F.X., Uchic, M.D., Anderson, P.M., and Mills, M.J.: Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater. 57, 3549 (2009).
46.San Juan, J., , M.L., and Schuh, C.A.: Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415 (2009).
47.Ye, J., Mishra, R.K., Pelton, A.R., and Minor, A.M.: Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 58, 490 (2010).
48.Recarte, V., Perez-Saez, R.B., Bocanegra, E.H., , M.L., and San Juan, J.: Dependence of the martensitic transformation characteristics on concentration in Cu-Al-Ni shape memory alloys. Mater. Sci. Eng., A. 273275, 380 (1999).
49.Recarte, V., Perez-Saez, R.B., Bocanegra, E.H., , M.L., and San Juan, J.: Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni sahpe memory alloys. Metall. Mater. Trans. A. 33, 2581 (2002).
50.Horikawa, H., Ichinose, S., Morii, K., Miyazaki, S., and Otsuka, K.: Orientation dependence of β11’ stress-induced martensitic transformation in a Cu-Al-Ni alloy. Metall. Trans. A 19, 915 (1988).
51.Zhang, H., Schuster, B.E., Wei, Q., and Ramesh, K.T.: The design of accurate micro-compression experiments. Scr. Mater. 54, 181 (2006).
52.Schuh, C.A., Mason, J.K., and Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).
53.Ibarra, A., San Juan, J., Bocanegra, E.H., and , M.L.: Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu-Al-Ni single crystals. Acta Mater. 55, 4789 (2007).
54.Rodriguez-Aseguinolaza, J., Ruiz-Larrea, I., , M.L., Lopez-Echarri, A., and San Juan, J.: A new quantitative approach to the thermoelastic martensitic transformation: The density of elastic states. Acta Mater. 56, 6283 (2008).
55.Rodriguez-Aseguinolaza, J., Ruiz-Larrea, I., , M.L., Lopez-Echarri, A., and San Juan, J.: Thermodynamic study of the temperature memory effects in Cu-Al-Ni shape memory alloys. J. Appl. Phys. 107, 083518 (2010).
56.Chen, Y. and Schuh, C.A.: Size effects in shape memory alloy microwires. Acta Mater. 59, 537 (2011).
57.San Juan, J., , M.L., and Schuh, C.A.: Superelastic cycling of Cu-Al-Ni shape memory alloy micro-pillars. To be published.
58.Ishida, A. and Sato, M.: Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film. Acta Mater. 51, 5571 (2003).
59.Carter, C.B. and Norton, M.G.: Ceramic Materials Science and Engineering. (Springer, New York, 2007).

Keywords

Related content

Powered by UNSILO

Thermomechanical behavior at the nanoscale and size effects in shape memory alloys

  • Jose San Juan (a1), Maria L. Nó (a2) and Christopher A. Schuh (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.