Skip to main content Accessibility help
×
Home

Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering

  • Zhihui Zhang (a1), Peter A. Sharma (a2), Enrique J. Lavernia (a3) and Nancy Yang (a4)

Abstract

N-type Bi2Te3 alloys with different microstructural length scales were prepared by mechanical milling and spark plasma sintering (SPS). The electrical resistivity, thermal conductivity, Seebeck coefficient, carrier concentration, and Hall mobility along and perpendicular to the loading direction were determined and characterized. The SPS sintered bulk disks using nanostructured powder contain high nanoporosity and weak (00l) texture along the loading axis, in contrast to those obtained with coarse powder. The influence of nanoporosity and texture on the thermoelectric and transport properties in the n-type Bi2Te3 alloys is discussed in light of the microstructural characteristics at different length scales.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: zhizhang@ucdavis.edu

References

Hide All
1.Tritt, T.M. and Subramanian, M.A.: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31(3), 188 (2006).
2.Scherrer, H. and Scherrer, S.: Bismuth telluride, antimony telluride, and their solid solutions, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press, Boca Raton, Florida, 1995).
3.Yamashita, O., Tomiyoshi, S., and Makita, K.: Bismuth telluride compounds with high thermoelectric figures of merit. J. Appl. Phys. 93(1), 368 (2003).
4.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).
5.Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043 (2007).
6.Park, K., Seo, J.H., Cho, D.C., Choi, B.H., and Lee, C.H.: Thermoelectric properties of p-type Te doped Bi0.5Sb1.5Te3 fabricated by powder extrusion. Mater. Sci. Eng., B 88(1), 103 (2002).
7.Perrin, D., Chitroub, M., Scherrer, S., and Scherrer, H.: Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. J. Phys. Chem. Solids 61(10), 1687 (2000).
8.Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763 (2006).
9.Mukhopadhyay, A. and Basu, B.: Consolidation microstructure property relationships in bulk nanoceramics and ceramic nanocomposites: A review. Int. Mater. Rev. 52(5), 257 (2007).
10.Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287(2), 183 (2000).
11.Mamedov, V.: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45(4), 322 (2002).
12.Zhao, L.D., Zhang, B.P., Li, J.F., Zhang, H.L., and Liu, W.S.: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10(5), 651 (2008).
13.Bottner, H., Ebling, D.G., Jacquot, A., Konig, J., Kirste, L., and Schmidt, J.: Structural and mechanical properties of spark plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).
14.Fan, X.A., Yang, J.Y., Chen, R.G., Yun, H.S., Zhu, W., Bao, S.Q., and Duan, X.K.: Characterization and thermoelectric properties of p-type 25%Bi2Te3-75% Sb2Te3 prepared via mechanical alloying and plasma activated sintering. J. Phys. D: Appl. Phys. 39(4), 740 (2006).
15.Chen, L., Jiang, J., and Shi, X.: Thermoelectric performance of textured Bi2Te3-based sintered materials prepared by spark plasma sintering, in Thermoelectric Materials 2003; Research and Applications, edited by Nolas, G.S., Yang, J., Hogan, T.P., and Johnson, D.C. (Mater. Res. Soc. Symp. Proc. 793, Warrendale, PA, 2004), S9.3, p. 365.
16.Swinkels, F.B. and Ashby, M.F.: Overview II—A second report on sintering diagrams. Acta Metall. 29(2), 259 (1981).
17.Atkinson, H.V. and Davies, S.: Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater. Trans. A 31(12), 2981 (2000).
18.Arzt, E., Ashby, M.F., and Easterling, K.E.: Practical applications of hot-isostatic pressing diagrams—Four case studies. Metall. Trans. A 14(2), 211 (1983).
19.Olevsky, E.A., Kandukuri, S., and Froyen, L.: Consolidation enhancement in spark-plasma sintering: Impact of high heating rates. J. Appl. Phys. 102(11), 114913 (2007).
20.Olevsky, E.A. and Froyen, L.: Impact of thermal diffusion on densification during SPS. J. Am. Ceram. Soc. 92(1), S122 (2009).
21.Stanciu, L.A., Kodash, V.Y., and Groza, J.R.: Effects of heating rate on densification and grain growth during field-assisted sintering of alpha-Al2O3 and MoSi2 powders. Metall. Mater. Trans. A 32(10), 2633 (2001).
22.Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9(2), 113 (1959).
23.Gothard, N., Ji, X., He, J., and Tritta, T.M.: Thermoelectric and transport properties of n-type Bi2Te3 nanocomposites. J. Appl. Phys. 103(5), 054314 (2008).
24.Martin, J., Wang, L., Chen, L., and Nolas, G.S.: Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79(11), 115311 (2009).
25.Seeger, K.: Semiconductor Physics: An Introduction. (Springer, Berlin, 2004).
26.Kim, D.H. and Mitani, T.: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399(1–2), 14 (2005).
27.Navratil, J., Stary, Z., and Plechacek, T.: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31(12), 1559 (1996).
28.Horak, J., Cermak, K., and Koudelka, L.: Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47(8), 805 (1986).
29.Miller, G.R. and Li, C.Y.: Evidence for existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26(1), 173 (1965).
30.Zhao, L.D., Zhang, B.P., Li, J.F., Zhou, M., and Liu, W.S.: Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering. Physica B 400(1–2), 11 (2007).
31.Masetti, B., Severi, M., and Solmi, S.: Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron. Dev. 30(7), 764 (1983).
32.He, Q.Y., Hu, S.J., Tang, X., Lan, Y.C., Yang, J., Wang, X.W., Ren, Z.F., Hao, Q., and Chen, G.: The great improvement effect of pores on ZT in Co1–xNi xSb3 system. Appl. Phys. Lett. 93(4), 042108 (2008).
33.Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2(5), 466 (2009).
34.Fleurial, J.P., Gailliard, L., Triboulet, R., Scherrer, H., and Scherrer, S.: Thermal-properties of high-quality single-crystals of bismuth telluride. 1. Experimental characterization. J. Phys. Chem. Solids 49(10), 1237 (1988).

Keywords

Related content

Powered by UNSILO

Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering

  • Zhihui Zhang (a1), Peter A. Sharma (a2), Enrique J. Lavernia (a3) and Nancy Yang (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.