Skip to main content Accessibility help
×
Home

Thermodynamic modeling and characterizations of Al nanoparticles produced by electrical wire explosion process

  • L. Santhosh Kumar (a1), S.R. Chakravarthi (a1), R. Sarathi (a2) and R. Jayaganthan (a3)
  • Please note a correction has been issued for this article.

Abstract

Aluminum (Al) nanoparticles are synthesized by wire explosion process (WEP) in an inert ambience of argon. Thermodynamic analysis and structural characterization of nano Al particles are made in the present work. Transmission electron microscopy (TEM) characterization has shown that the Al nanoparticles produced are spherical in shape and it follows a lognormal distribution. A unimodal size dependent thermodynamic model is formulated to understand the size dependent thermal behavior of aluminum nanoparticles. Three different melting modes such as, homogeneous melting mode (HMM), liquid skin melting (LSM) and liquid nucleation and growth (LNG) are assumed to understand the melting behavior of aluminum nanoparticles synthesized by the WEP process. The effect of saturation ratio on the nucleation rate and the impingement factor is also discussed. The size dependent melting and enthalpy of fusion of Al nanoparticles predicted by thermodynamic model are in tandem with the DSC results.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: metarj@iitm.ac.in

Footnotes

Hide All
Contributing Editor: Susan B. Sinnott

Footnotes

References

Hide All
1. Sarathi, R., Sindhu, T.K., and Chakravarthy, S.R.: Generation of nano aluminium powder through wire explosion process and its characterization. Mater. Charact. 58, 148 (2007).
2. Hahn, H. and Averback, R.S.: The production of nanocrystalline powders by magnetron sputtering. J. Appl. Phys. 67, 1113 (1990).
3. Jiang, W. and Yatsui, K.: Pulsed wire discharge for nanosize powder synthesis. IEEE Trans. Plasma Sci. 26, 14981501 (1998).
4. Rhee, C.K., Jee, G.H., and Kim, W.W.: Synthesis and compaction of Al-based nanopowders by pulsed discharge method. J. Korean Powder Metall. Inst. 9(6), 433440 (2002).
5. Sindhu, T.K., Sarathi, R., and Chakravarthy, S.R.: Understanding nanoparticle formation by a wire explosion process through experimental and modeling studies. Nanotechnology 19, 025703 (2008).
6. Ivanov, V., Kotov, Y.A., Somatov, O.M., Bohme, R., Karow, H.U., and Schumacher, G.: Synthesis and dynamic compaction of ceramic nanopowders by techniques based on electric pulsed power. Nanostruct. Mater. 6(1–4), 287290 (1995).
7. Tepper, F.: Electro-explosion of wire produces nanosize metals. Met. Powder Rep. 53(6), 3133.
8. Dong, S., Zou, G., and Yang, H.: Thermal characteristic of ultrafine-grained aluminium produced by wire electrical explosion. Scr. Mater. 44, 1723 (2001).
9. Kwon, Y.S., Hun, J.Y., Yavorovsky, N.A., Illyn, A.P., and Soon, K.J.: Ultra-fine powder by wire explosion method. Scr. Mater. 44, 22472251 (2001).
10. Chandler, K.M., Hammer, D.A., Sinars, D.B., Pikuz, S.A., and Shelkovenko, T.A.: The relationship between exploding wire expansion rates and wire metal properties near the boiling temperature. IEEE Trans. Plasma Sci. 30(2), 577 (2002).
11. Kwon, Y.S., Ilyin, A.P., Tikhonov, D.V., Yablunovsky, G.V., and An, V.V.: Characteristics of nanopowders produced by wire electrical explosion of tinned copper conductor in argon. Mater. Lett. 62(17–18), 3143 (2008).
12. Sarathi, R., Sindhu, T.K., Chakravarthy, S.R., Sharma, A., and Nagesh, K.V.: Generation and characterization of nano-tungsten particles formed by wire explosion process. J. Alloys Compd. 475(1–2), 658663 (2009).
13. Antony, J.K., Nilesh, J.V., Chakravarthy, S.R., and Sarathi, R.: Understanding the nano-aluminium particle formation by wire explosion process using optical emission technique. J. Quant. Spectrosc. Radiat. Transfer 111, 25092516 (2010).
14. Liang, C., Song, W.L., Guo, L.G., and Xie, C.S.: Thermal property and microstructure of Al nanopowders produced by two evaporation routes. Trans. Nonferrous Met. Soc. China 19, 187191 (2009).
15. Debalina, B., Kamaraj, K., Murthy, B.S., Chakravarthy, S.R., and Sarathi, R.: Generation and characterization of nano-tungsten carbide particles by wire explosion process. J. Alloys Compd. 496, 122128 (2010).
16. Sindhu, T.K., Chakravarthy, S.R., Jayaganthan, R., and Sarathi, R.: Studies on generation and characterization of nano aluminium nitride using wire explosion technique. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 36, 5358 (2006).
17. Giri, V.S., Sarathi, R., Chakravarthy, S.R., and Venkateshaiah, C.: Studies on production and characterization of nano-Al2O3 powder using wire explosion technique. Mater. Lett. 58, 10471050 (2004).
18. Aravinth, S., Sankar, B., Chakravarthy, S.R., and Sarathi, R.: Generation and characterization of nano tungsten oxide particles by wire explosion process. Mater. Charact. 62, 248255 (2011).
19. Bora, B., Wong, C.S., Bhuyan, H., Lee, Y.S., Yap, S.L., and Favre, M.: Understanding the mechanism of nanoparticle formation in wire explosion process. J. Quant. Spectrosc. Radiat. Transfer 117, 16 (2013).
20. Kearns, M.: Development and applications of ultrafine aluminium powders. Mater. Sci. Eng., A 375–377, 120126 (2004).
21. Hayt, W.H., Kemmerly, J.E., and Durbin, S.M.: Engineering Circuit Analysis, 6th ed. (Tata Mcgraw-Hill Publishing Company Ltd., New Delhi, India, 2006); pp. 212260.
22. Sedoi, V.S., Mesyats, G.A., Oreshkin, V.I., Valevich, V.V., and Chemezova, L.I.: The current density and the specific energy input in fast electrical explosion. IEEE Trans. Plasma Sci. 27(4), 845 (1999).
23. Anderson, G.W., Neilson, F.W., and Chace, W.G.: Exploding Wires (Plenum Press, New York, 1959).
24. Godbloed, H. and Poedts, S.: Principles of Magnetohydrodynamics (Cambridge University Press, Cambridge, U.K., 2002).
25. Tkachenko, S.I., Vorob’ev, V.S., and Malyshenko, S.P.: The nucleation mechanism of wire explosion. J. Phys. D: Appl. Phys. 37(3), 495500 (2004).
26. Qi, W.H.: Size effect on melting temperature of nanosolids. Phys. B 368, 4650 (2005).
27. Nanda, K.K.: Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana J. Phys. 72(4), 617628 (2009).
28. Williams, M.M.R.: Growth rates of liquid drops for large saturation ratios. J. Aerosol Sci. 26(3), 477487 (1995).
29. Barnard, A.S.: Modelling of nanoparticles: Approaches to morphology and evolution. Rep. Prog. Phys. 73(8), 152 (2010).
30. O’Hayre, R.: Materials Kinetics Fundamentals (John Wiley and Sons, Inc., Hoboken, New Jersey, 2015).
31. Friedlander, S.K.: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed. (Oxford University Press, New York, Oxford, 2000).
32. Brandes, E.A. and Brook, G.B.: Smithells Metals Reference Book, 7th ed. (Butterworth Heinemann, Great Britain, 1992).
33. Alcock, C.B., Itkin, V.P., and Horrigan, M.K.: Vapor pressure equations for the metallic elements: 298–2500 K. Can. Metall. Q. 23(3), 309313 (1984).
34. Haynes, W.M. ed.: CRC Handbook of Chemistry and Physics, 96th ed. (CRC Press/Taylor and Francis, Boca Raton, FL, Internet version-2016).
35. Yaws, C.L.: Handbook of Vapor Pressure (Gulf Publishing Company, Houston, Texas, 1995).
36. Kotov, Y.A.: Electric explosion of wires as a method for preparation of nanopowders. J. Nanopart. Res. 5(5), 539550 (2003).
37. Umakoshi, M., Yoshitomi, T., and Kato, A.: Preparation of alumina and alumina-silica powders by wire explosion resulting from electric discharge. J. Mater. Sci. 30(5), 1240 (1995).
38. Tokoi, Y., Suzuki, T., Nakayama, T., Suematsu, H., Jiang, W., and Niihara, K.: Synthesis of TiO2 nanosized powder by pulsed wire discharge. Jpn. J. Appl. Phys. 47(1S), 760 (2008).
39. Sarathi, R., Reddy, S.R., Rashmi, S.T., and Kamaraj, M.: Investigation of nano-molybdenum carbide particle produced by wire-explosion process. IEEE Trans. Plasma Sci. 43(10), 34703475 (2015).
40. Lerner, M.I., Alexander, V.P., Elena, A.G., and Sergey, G.P.: Structure of binary metallic nanoparticles produced by electrical explosion of two wires from immiscible elements. Powder Technol. 288, 371378 (2016).
41. Flagan, R.C. and Lunden, M.M.: Particle structure control in nanoparticle synthesis from the vapor phase. Mater. Sci. Eng., A 204(1–2), 113124 (1995).

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Santhosh Kumar supplementary material
Figures S1-S7

 Word (842 KB)
842 KB

Thermodynamic modeling and characterizations of Al nanoparticles produced by electrical wire explosion process

  • L. Santhosh Kumar (a1), S.R. Chakravarthi (a1), R. Sarathi (a2) and R. Jayaganthan (a3)
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: