Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T10:00:27.743Z Has data issue: false hasContentIssue false

Thermochemistry of volatile metal hydroxides and oxyhydroxides at elevated temperatures

Published online by Cambridge University Press:  30 January 2019

Dwight L. Myers
Affiliation:
Department of Chemistry and Physics, East Central University, Ada, Oklahoma 74820, USA
Nathan S. Jacobson*
Affiliation:
Materials and Structures Division, NASA Glenn Research Center, Cleveland, Ohio 44135, USA
Charles W. Bauschlicher Jr.
Affiliation:
Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
Elizabeth J. Opila
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
*
a)Address all correspondence to this author. e-mail: Nathan.S.Jacobson@nasa.gov
Get access

Abstract

A principal mode of corrosion in combustion or fuel cell environments is the formation of volatile hydroxides and oxyhydroxides from metal or oxide surfaces at high temperatures. It is important to determine the degree of volatility and accurate thermodynamic properties for these hydroxides. Significant gaseous metal hydroxides/oxyhydroxides are discussed, along with available experimental and theoretical methods of characterizing species and determining their thermodynamic properties.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Glemser, O. and Wendlandt, H.G.: Gaseous hydroxides. In Advances in Inorganic Chemistry and Radiochemistry, Vol. 5, H.J. Emeléus and A.G. Sharpe, eds., pp. 215–258 (Academic Press, New York, 1963).Google Scholar
Hastie, J.W.: High Temperature Vapors Science and Technology (Academic Press, New York, 1975); pp. 6087.Google Scholar
Meschter, P.J., Opila, E.J., and Jacobson, N.S.: Water vapor mediated volatilization of high temperature materials. In Annual Reviews of Materials Research, Lipkin, D.M., ed. (Annual Reviews, Inc., Palo Alto, 2013).Google Scholar
Jacobson, N.S.: High-temperature durability considerations for HSCT combustor. NASA TP-3162 (1992).Google Scholar
Glassman, I.: Combustion, 2nd ed. (Academic Press, Inc., Orlando, 1987).Google Scholar
Opila, E.J. and Myers, D.L.: Alumina volatility in water vapor at elevated temperatures. J. Am. Ceram. Soc. 87, 17011705 (2004).CrossRefGoogle Scholar
Opila, E.J. and Myers, D.L.: Alumina volatility in water vapor at elevated temperatures: Application to combustion environments. In High Temperature Corrosion and Materials Chemistry IV, Opila, E., Hou, P., Maruyama, T., Pieraggi, B., Shifler, D., and Wuchina, E., eds. (The Electrochemical Society, Inc., Pennington, New Jersey, 2003); pp. 535544.Google Scholar
Fergus, J.W.: Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. Int. J. Hydrogen Energy 32, 36643671 (2007).CrossRefGoogle Scholar
Young, D.J. and Pint, B.A.: Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor. Oxid. Met. 66, 137153 (2006).CrossRefGoogle Scholar
Kantrowitz, A. and Grey, J.: A high intensity source for the molecular beam. I. Theoretical. Rev. Sci. Instrum. 21, 328 (1951).CrossRefGoogle Scholar
Milne, T.A. and Greene, F.T.: Direct mass spectrometric sampling of high pressure systems. In Mass Spectrometry in Inorganic Chemistry, Margrave, J.L., ed. (ACS, Washington DC, 1968); ch. 5, pp. 6882.CrossRefGoogle Scholar
Stearns, C.A., Kohl, F.J., Fryburg, G.C., and Miller, R.A.: A High Pressure Modulated Molecular Beam Mass Spectrometric Sampling System: NASA Technical Memorandum 73720 (National Aeronautics and Space Administration, Washington, DC, 1977).Google Scholar
Opila, E.J., Fox, D.S., and Jacobson, N.S.: Mass spectrometric identification of Si–O–H(g) species from the reaction of silica with water vapor at atmospheric pressure. J. Am. Ceram. Soc. 80, 10091012 (1997).CrossRefGoogle Scholar
Myers, D.L. and Jacobson, N.S.: Identification of volatile metal hydroxides with free jet expansion mass spectrometry. In Proceedings of International KEMS Workshop, D. Kobertz, N. Jacobson, and D. Sergeev, eds., Calphad Special Issue, in press (Juelich, Germany, 2017).Google Scholar
Myers, D., Kulis, M., Horvath, J., Jacobson, N., and Fox, D.: Interactions of Ta2O5 with water vapor at elevated temperatures. J. Am. Ceram. Soc. 100, 23532357 (2017).CrossRefGoogle Scholar
Fryburg, G.C., Miller, R.A., Kohl, F.J., and Stearns, C.A.: Volatile products in the corrosion of Cr, Mo, Ti, and four superalloys exposed to O2 containing H2O and gaseous NaCl. J. Electrochem. Soc. 124, 17381743 (1977).CrossRefGoogle Scholar
Hastie, J.W., Zmbov, K.F., and Bonnell, D.W.: Transpiration mass spectrometric analysis of liquid KCl and KOH vaporization. In Modern High Temperature Science, J.L. Margrave, ed. (Humana Press, Totowa, NJ, 1984); pp. 333364.CrossRefGoogle Scholar
Opila, E.J., Myers, D.L., Jacobson, N.S., Nielsen, I.M.B., Johnson, D.F., Olminsky, J.K., and Allendorf, M.D.: Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g). J. Phys. Chem. A 111, 19711980 (2007).CrossRefGoogle Scholar
Bassler, J.M. and Margrave, J.L.: High-temperature applications of infrared spectroscopy. In The Characterization of High Temperature Vapors, Margrave, J.L., ed. (John Wiley & Sons, Inc., New York, 1967); pp. 264281.Google Scholar
Weltner, W. Jr.: The matrix-isolation technique applied to high temperature molecules. In Advances in High Temperature Chemistry, Vol. 2., L. Eyring, ed. (Elsevier, New York, 1969); pp. 85105.Google Scholar
Wang, X. and Andrews, L.: Infrared spectroscopic observations of the group 13 metal hydroxides, M(OH)1,2,3 (M = Al, Ga, in, and Tl) and HAl(OH)2. J. Phys. Chem. A 111, 18601868 (2007).CrossRefGoogle Scholar
Wang, X.F. and Andrews, L.: Infrared spectra for group 4 dihydroxide and tetrahydroxide molecules. J. Phys. Chem. A 109, 1068910701 (2005).CrossRefGoogle Scholar
Shao, L., Zhang, L., Chen, M., Lu, H., and Zhou, M.: Reactions of titanium oxides with water molecules. A matrix isolation FTIR and density functional study. Chem. Phys. Lett. 343, 178184 (2001).CrossRefGoogle Scholar
Jensen, J.H.: Molecular Modeling Basics (CRC Press, Boca Raton, 2010).CrossRefGoogle Scholar
Merton, U. and Bell, W.E.: The transpiration method. In The Characterization of High Temperature Vapors, Margrave, J.L., ed. (John Wiley & Sons, Inc., New York, 1967); p. 91.Google Scholar
Belton, G.R. and Richardson, F.D.: A volatile iron hydroxide. Trans. Faraday Soc. 58, 15621572 (1962).CrossRefGoogle Scholar
Belton, G.R. and McCarron, R.L.: The volatilization of tungsten in the presence of water vapor. J. Phys. Chem. 68, 18521856 (1964).CrossRefGoogle Scholar
Belton, G.R. and Jordan, A.S.: The volatilization of molybdenum in the presence of water vapor. J. Phys. Chem. 69, 20652071 (1965).CrossRefGoogle Scholar
Belton, G.R. and Jordan, A.S.: The gaseous hydroxides of cobalt and nickel. J. Phys. Chem. 71, 41144120 (1967).CrossRefGoogle Scholar
Kim, Y.W. and Belton, G.R.: The thermodynamics of volatilization of chromic oxide: Part I. The species CrO3 and CrO2OH. Metall. Trans. 5, 18111816 (1974).CrossRefGoogle Scholar
Hashimoto, A.: The effect of H2O gas on volatilities of planet forming major elements: I. Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula. Geochim. Cosmochim. Acta 56, 511532 (1992).CrossRefGoogle Scholar
Jacobson, N.S., Opila, E.J., Myers, D.L., and Copland, E.H.: Thermodynamics of gas phase species in the Si–O–H system. J. Chem. Thermodyn. 37, 11301137 (2005).CrossRefGoogle Scholar
Drowart, J. and Goldfinger, P.: Investigation of inorganic systems at high temperature by mass spectrometry. Angew. Chem., Int. Ed. 6, 581596 (1967).CrossRefGoogle Scholar
Opila, E.J., Smialek, J.L., Robinson, R.C., Fox, D.S., and Jacobson, N.S.: SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model. J. Am. Ceram. Soc. 82, 18261834 (1999).CrossRefGoogle Scholar
Krikorian, O.H.: Thermodynamics of the silica-steam system. In Symposium on Engineering with Nuclear Explosives (Las Vegas, Nevada, 1970). (unpublished).Google Scholar
Darling, C.L. and Schlegel, H.B.: Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory. J. Phys. Chem. 97, 82078211 (1993).CrossRefGoogle Scholar
Allendorf, M.D., Melius, C.F., Ho, P., and Zachariah, M.R.: Theoretical study of the thermochemistry of molecules in the Si–O–H system. J. Phys. Chem. 99, 1528515293 (1995).CrossRefGoogle Scholar
Plyasunov, A.V.: Thermodynamic properties of H4SiO4 in the ideal gas state as evaluated from experimental data. Geochim. Cosmochim. Acta 75, 38533865 (2011).CrossRefGoogle Scholar
Gurvich, L.V., Veyts, I.V., and Alcock, C.B.: Thermodynamic properties of individual substances: Elements O, H (D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P and their compounds. Pt. 1. Methods and computation. Pt. 2. Tables. Vol. 1–2. Hemisphere, (1989) and Vol. 3, Begell House, Inc., New York (1989).Google Scholar
Ebbinghaus, B.B.: Thermodynamics of gas phase chromium species: The chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes. Combust. Flame 93, 119137 (1993).CrossRefGoogle Scholar
Stanislowski, M., Wessel, E., Hilpert, K., Markus, T., and Singheiser, L.: Chromium Vaporization from High Temperature Alloys I. Chromia-Forming Steels and the Influence of Outer Oxide Layers. J. Electrochem. Soc. 154, A295A306 (2007).CrossRefGoogle Scholar
Nguyen, Q.N., Myers, D.L., Jacobson, N.S., and Opila, E.J.: Experimental and theoretical study of the reactions of titania and water at high temperatures. NASA/TM—2014-218372 (2014).Google Scholar
Nguyen, Q.N., Bauschlicher, C.W. Jr., Myers, D.L., Jacobson, N.S., and Opila, E.J.: Computational and experimental study of thermodynamics of the reaction of titania and water at high temperatures. J. Phys. Chem. A 121, 95089517 (2017).CrossRefGoogle Scholar
Geiger, G.H. and Poirer, D.R.: Transport Phenomena in Metallurgy, Vol. 532 (Addison-Wesley Publishing Co., Reading, Massachusetts, 1972).Google Scholar
dos Santos e Lucato, S.L., Sudre, O.H., and Marshall, D.B.: A method for assessing reactions of water vapor with materials in high-speed, high-temperature flow. J. Am. Ceram. Soc. 94, 186195 (2011).CrossRefGoogle Scholar
Golden, R.A. and Opila, E.J.: A method for assessing the volatility of oxides in high-temperature high velocity vapor. J. Eur. Ceram. Soc. 36, 11351147 (2016).CrossRefGoogle Scholar
Mueller, K.A., Golden, R.A., and Opila, E.J.: High temperature behavior of Ta2O5 in water vapor. The Spectra, IX, 5055 (2018).Google Scholar
Krikorian, O.H.: Predictive calculations of volatilities of metals and oxides in steam containing environments. High Temp.-High Pressures 14, 387397 (1982).Google Scholar
Greene, F.T.: Applications of electronic spectroscopy to high-temperature systems. In The Characterization of High Temperature Vapors, Margrave, J.L., ed. (John Wiley & Sons, New York, 1967); pp. 300358.Google Scholar
Chase, M.W. Jr.: NIST-JANAF Thermochemical Tables, 4th ed. Published by the American Chemical Society, the American Institute of Physics, and the National Institute of Standards and Technology. J. Phys. Chem. Ref. Data, Monograph No. 9 (1998).Google Scholar
Plyasunov, A.V., Zyubin, A.S., and Zyubina, T.S.: Thermodynamic properties of Si(OH)4(g) based on experimental and quantum chemistry data. J. Am. Ceram. Soc. 101, 49214926 (2018).CrossRefGoogle Scholar
Martin, J.M.L.: Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies. Mol. Phys. 86, 1437 (1995).CrossRefGoogle Scholar
Scott, A.P. and Radom, L.: Harmonic vibrational frequencies: An evaluation of Hartree–Fock, moller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 100, 1650216513 (1996).CrossRefGoogle Scholar
Pitzer, K.S. and Gwinn, W.D.: Energy levels and thermodynamic functions for molecules with internal rotation: I. Rigid frame with attached tops. In Molecular Structure and Statistical Thermodynamics: Selected Papers of, Pitzer, Kenneth S., ed. (World Scientific, Singapore, 1993); pp. 3346.CrossRefGoogle Scholar
Courcot, E., Rebillat, F., Teyssandier, F., and Louchet-Pouillerie, C.: Stability of rare earth oxides in a moist environment at high temperatures—Experimental and thermodynamic studies. Part I: The way to assess thermodynamic parameters from volatilisation rates. J. Eur. Ceram. Soc. 30, 19031909 (2010).CrossRefGoogle Scholar
Courcot, E., Rebillat, F., Teyssandier, F., and Louchet-Pouillerie, C.: Stability of rare earth oxides in a moist environment at elevated temperatures—Experimental and thermodynamic studies: Part II: Comparison of the rare earth oxides. J. Eur. Ceram. Soc. 30, 19111917 (2010).CrossRefGoogle Scholar
Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Mahfoud, R.B., Melançon, J., Pelton, A.D., and Petersen, S.: FactSage thermochemical software and databases. Calphad 26, 189228 (2002).CrossRefGoogle Scholar