Skip to main content Accessibility help

Thermally oxidized electron beam melted γ-TiAl: In vitro wear, corrosion, and biocompatibility properties

  • Ipsita Som (a1), Vamsi Krishna Balla (a2), Mitun Das (a2) and Dipankar Sukul (a3)


In this investigation, an electron beam melting-processed γ-TiAl alloy (Ti–48Al–2Cr–2Nb, at.%) was oxidized in air to improve its in vitro tribological, electrochemical, and biocompatibility properties. The γ-TiAl alloy samples were oxidized at 400, 600, and 800 °C for 1 and 4 h. The oxidized layer thickness, composition, and surface morphology found to change with oxidation temperature. The oxidation thickness varied between 1.29 ± 0.2 and 2.18 ± 0.2 μm. The primary oxides on the surface were Al2O3 and TiO2 with minor concentrations of Cr2O3, Nb2O5, and nitrides of Ti. The surface hardness of the alloy increased by 1.7-fold with increasing temperature from 400 to 800 °C with 1 h soaking, and at 4 h, the maximum hardness was 12.26 GPa. The high hardness of the oxidized γ-TiAl alloy resulted in two orders of magnitude lower wear rate than the bare γ-TiAl alloy. Oxidation at 800 °C for 4 h resulted in significant reduction in corrosion current and no passivity breakdown was observed. In vitro cell culture experiments, using mouse preosteoblast cells, revealed high cell density on the oxidized γ-TiAl alloy, suggesting its enhanced cell proliferation compared to the bare γ-TiAl alloy and CP-Ti.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Escudero, M.L., Muñoz-Morris, M.A., García-Alonso, M.C., and Fernández-Escalante, E.: In vitro evaluation of a gamma-TiAl intermetallic for potential endoprothesic applications. Intermetallics 12, 253 (2004).
2.Choubey, A., Basu, B., and Balasubramaniam, R.: Electrochemical behavior of intermetallic Ti3Al-based alloys in simulated human body fluid environment. Intermetallics 12, 679 (2004).
3.Castaneda-Munoz, D.F., Sundaram, P.A., and Ramirez, N.: Bone tissue reaction to Ti–48Al–2Cr–2Nb (at.%) in a rodent model: A preliminary SEM study. J. Mater. Sci.: Mater. Med. 18, 1433 (2007).
4.Rivera-Denizard, O., Diffoot-Carlo, N., Navas, V., and Sundaram, P.A.: Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. J. Mater. Sci.: Mater. Med. 19, 153 (2008).
5.Delgado-Alvarado, C. and Sundaram, P.A.: Corrosion evaluation of Ti–48Al–2Cr–2Nb (at.%) in Ringer’s solution. Acta Biomater. 2, 701 (2006).
6.Bello, S.A., de Jesús-Maldonado, I., Rosim-Fachini, E., Sundaram, P.A., and Diffoot-Carlo, N.: In vitro evaluation of human osteoblast adhesion to a thermally oxidized gamma-TiAl intermetallic alloy of composition Ti–48Al–2Cr–2Nb (at.%). J. Mater. Sci.: Mater. Med. 21, 1739 (2010).
7.Santiago-Medina, P., Sundaram, P.A., and Diffoot-Carlo, N.: The effects of micro arc oxidation of gamma titanium aluminide surfaces on osteoblast adhesion and differentiation. J. Mater. Sci.: Mater. Med. 25, 1577 (2014).
8.Lara Rodriguez, L., Sundaram, P.A., Rosim-Fachini, E., Padovani, A.M., and Diffoot-Carlo, N.: Plasma electrolytic oxidation coatings on γTiAl alloy for potential biomedical applications. J. Biomed. Mater. Res., Part B 102, 988 (2014).
9.Biamino, S., Penna, A., Ackelid, U., Sabbadini, S., Tassa, O., Fino, P., Pavese, M., Gennaro, P., and Badini, C.: Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics 19, 776 (2011).
10.Hernandez, J., Murr, L.E., Gaytan, S.M., Martinez, E., Medina, F., and Wicker, R.B.: Microstructures for two-phase gamma titanium aluminide fabricated by electron beam melting. Metallogr., Microstruct., Anal. 1, 14 (2012).
11.Schwerdtfeger, J. and Körner, C.: Selective electron beam melting of Ti–48Al–2Nb–2Cr: Microstructure and aluminium loss. Intermetallics 49, 29 (2014).
12.Tang, H.P., Yang, G.Y., Jia, W.P., He, W.W., Lu, S.L., and Qian, M.: Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. Mater. Sci. Eng., A 636, 103 (2015).
13.Ge, W., Guo, C., and Lin, F.: Effect of process parameters on microstructure of TiAl alloy produced by electron beam selective melting. Procedia Eng. 81, 1192 (2014).
14.Löber, L., Schimansky, F.P., Kühn, U., Pyczak, F., and Eckert, J.: Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy. J. Mater. Process. Technol. 214, 1852 (2014).
15.Gussone, J., Hagedorn, Y-C., Gherekhloo, H., Kasperovich, G., Merzouk, T., and Hausmann, J.: Microstructure of γ-titanium aluminide processed by selected laser melting at elevated temperatures. Intermetallics 66, 133 (2015).
16.Qu, H.P. and Wang, H.M.: Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys. Mater. Sci. Eng., A 466, 187 (2007).
17.Balla, V.K., Das, M., Mohammad, A., and Al-Ahmari, A.M.: Additive manufacturing of γ-TiAl: Processing, microstructure, and properties. Adv. Eng. Mater. 18, 1208 (2016).
18.Mohammad, A., Al-Ahmari, A.M., Balla, V.K., Das, M., Datta, S., Yadav, D., and Janaki Ram, G.D.: In vitro wear, corrosion and biocompatibility of electron beam melted γ-TiAl. Mater. Des. 133, 186 (2017).
19.Pemsler, J.P.: Studies on the oxygen gradients in oxidizing metals III. Kinetics of the oxidation of zirconium at high temperatures. J. Electrochem. Soc. 112, 477 (1965).
20.Balla, V.K., Xue, W., Bose, S., and Bandyopadhyay, A.: Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants. Acta Biomater. 5, 2800 (2009).
21.Liang, B., Kawanabe, K., Ise, K., Iida, H., and Nakamura, T.: Polyethylene wear against alumina and zirconia heads in cemented total hip arthroplasty. J. Arthroplasty 22, 251 (2007).
22.Perrichon, A., Liu, B., Chevalier, J., Gremillard, L., Reynard, B., Farizon, F., Liao, J-D., and Geringer, J.: Ageing, shocks and wear mechanisms in ZTA and the long-term performance of hip joint materials. Materials 10, 569 (2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed