Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:49:14.476Z Has data issue: false hasContentIssue false

Thermal stability of sputtered copper films containing dilute insoluble tungsten: Thermal annealing study

Published online by Cambridge University Press:  31 January 2011

C. H. Lin
Affiliation:
Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
J. P. Chu*
Affiliation:
Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
T. Mahalingam
Affiliation:
Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
T. N. Lin
Affiliation:
Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China
S. F. Wang
Affiliation:
Department of Materials and Minerals Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, Republic of China
*
b)Address all correspondence to this author. e-mail: jpchu@mail.ntou.edu.tw
Get access

Abstract

This paper describes studies on the thermal annealing behavior of Cu films with 2.3 at.% W deposited on Si substrates. The magnetron cosputtered Cu films with insoluble W were vacuum annealed at temperatures ranging from 200 to 800 °C. Twins were observed in focused ion beam and transmission electron microscopy images of as-deposited and 400 °C annealed pure Cu film, and these twins were attributed to the intrinsic low stacking fault energy. Twins in pure Cu film may provide an additional diffusion path during annealing for copper silicide formation. The beneficial effect of W on the thermal stability of Cu film was supported by the following observations: (i) x-ray diffraction studies show that Cu4Si was formed at 530 °C in Cu–W film, whereas pure Cu film exhibited Cu4Si growth at 400 °C; (ii) shallow diffusion profiles for Cu into Si in Cu–W film through secondary ion mass spectroscopy analyses, and the high activation energy needed for the copper silicide formation from the differential scanning calorimetry study; (iii) addition of W in Cu film increases the stacking fault energy and results in a low twin density.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nitta, T., Ohmi, T., Otsuki, M., Takewaki, T., and Shibata, T., J. Electrochem. Soc. 139, 922 (1992).CrossRefGoogle Scholar
2.Barmak, K., Lucadamo, G.A., Cabral, C., Jr., Lavoie, C., and Harper, J.M.E., J. Appl. Phys. 87, 2204 (2000).CrossRefGoogle Scholar
3.Zhang, S.L., Harper, J.M.E., D’Heurle, F.M., J. Elect. Mater. 30, L1 (2001).CrossRefGoogle Scholar
4.Echigoya, J., Enoki, H., Satoh, T., Ohmi, T., Otsuki, M., and Shibata, T., Appl. Surf. Sci. 56/58, 463 (1992).CrossRefGoogle Scholar
5.Liu, C.S. and Chen, L.J., J. Appl. Phys. 74, 5501 (1993).CrossRefGoogle Scholar
6.Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (John Wiley, New York, 1981), p. 21.Google Scholar
7.Clevenger, L.A., Bojarczuk, N.A., Holloway, K., Harper, J.M.E., Cabral, C., Jr., Schad, R.G., Cardone, F., and Stolt, L.., J. Appl. Phys. 73, 300 (1993).CrossRefGoogle Scholar
8.Lee, C.S., Gong, H., Liu, R., Wee, A.T.S., Cha, C.L., See, A., Chan, L., J. Appl. Phys. 90, 3822 (2001).CrossRefGoogle Scholar
9.Chu, J.P., Chung, C.H., Lee, P.Y., Rigsbee, J.M., and Wang, J.Y., Metall. Mater. Trans. A 29A, 647 (1998).CrossRefGoogle Scholar
10.Chu, J.P. and Lin, T.N., J. Appl. Phys. 85, 6462 (1999).CrossRefGoogle Scholar
11.Chen, H.S., Kimerling, L.C., Poate, J.M., and Brown, W.L., Appl. Phys. Lett. 32, 461 (1978).CrossRefGoogle Scholar
12.Ono, H., Nakano, T., and Ohta, T., Appl. Phys. Lett. 64, 1511 (1994).CrossRefGoogle Scholar
13.Chu, J.P., Liu, C.J., Lin, C.H., and Wang, S.F., Mater. Chem. Phys. 72, 286 (2001).CrossRefGoogle Scholar
14.See, for example, Proceedings of the Thermal Analysis in Metallurgy, edited by Shull, R.D., Joshi, A. (TMS, Warrendale, PA, 1992).Google Scholar
15.Chromik, R.R, Neils, W.K., and Cotts, E.J., J. Appl. Phys. 86, 4273 (1999).CrossRefGoogle Scholar
16.Hu, C-K., Gignac, L., Rosenberg, R., Liniger, E., Rubino, J., and Sambucetti, C., Appl. Phys. Lett. 81, 1782 (2002).CrossRefGoogle Scholar
17.Verkleij, D. and Mulders, C., Micron. 30, 227 (1999).CrossRefGoogle Scholar
18.Chang, K-M., Yeh, T-H., Deng, I-C., and Shih, C-W., J. Appl. Phys. 82, 1469 (1997).CrossRefGoogle Scholar
19.Shewmon, P.G., Diffusion in Solids, 2nd ed. (McGraw-Hill, New York, 1963), p. 116.Google Scholar
20.Chu, J.P., Hsieh, I.J., Chen, J.T., and Feng, M.S., Mater. Chem. Phys. 53, 172 (1998).CrossRefGoogle Scholar
21.Benouattas, N., Mosser, A., Raiser, D., Faeber, J., and Bouabellou, A., Appl. Surf. Sci. 153, 79 (2000).CrossRefGoogle Scholar
22.Minkwitz, C., Herzig, CHR., Rabkin, E., and Gust, W., Acta Mater. 47, 1231 (1999).CrossRefGoogle Scholar
23.Kissinger, H.E., Anal. Chem. 29, 1702 (1957).Google Scholar
24.Chen, J.Z. and Wu, S.K., Thin Solid Films 339, 194 (1999).CrossRefGoogle Scholar
25.Chu, J.P., Wang, S.F., Lee, S.J., and Chang, C.W., J. Appl. Phys. 88, 6086 (2000).CrossRefGoogle Scholar
26.Seibt, M., Hedemann, H., Istratov, A., Riedel, F., Sattler, A., and Schroter, W., Phys. Status Solidi A 171, 301 (1999).3.0.CO;2-P>CrossRefGoogle Scholar
27.Rath, B.B., Imam, M.A., and Pande, C.S., Mater. Phys. Mech. 1, 61 (2000).Google Scholar
28.Smallman, R.E., Modern Physical Metallury, 4th ed. (Butterworth, London, U.K., 1999), p. 285.Google Scholar
29.Li, S., Dong, Z.L., Latt, K.M., and Park, H.S., Appl. Phys. Lett. 80, 2296 (2002).CrossRefGoogle Scholar