Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-20T11:35:47.789Z Has data issue: false hasContentIssue false

Thermal instability of (Bi,Pb)2Sr2Ca2Cu3Ox in contact with silver

Published online by Cambridge University Press:  31 January 2011

Robert J. Moon
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette,Indiana 47907
Kevin P. Trumble
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette,Indiana 47907
Keith J. Bowman
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette,Indiana 47907
Get access

Abstract

The chemical and microstructural evolution of particulate (Bi,Pb)2223 in contact with pure bulk silver at 830 to 905 °C under flowing air and Ar−5% O2 atmospheres has been studied. Specimens annealed under PO2 and temperature conditions for which the (Bi,Pb)2223 phase itself is stable, based on a critical assessment of the literature, revealed a silver/(Bi,Pb)2223 interface-limited reaction, producing both solid and liquid decomposition phases. The (Bi,Pb)2223 not in direct contact with silver exhibited no reaction under the same conditions. Solid silver dissolves into the (Bi,Pb)2223 incongruent liquid, facilitating the incongruent melting reaction. On cooling, equiaxed metallic silver particles precipitated uniformly throughout bulk specimens partially melted on a silver substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Majewski, P., Supercond. Sci. Technol. 10, 453467 (1997).CrossRefGoogle Scholar
2.Wong-Ng, W., Cook, L.P., Jiang, F., Green Wood, W., Balachandran, U., and Lanagan, M., J. Mater. Res. 12, 28552865 (1997).CrossRefGoogle Scholar
3.Tetenbaum, M. and Maroni, V., Physica C 260, 7180 (1996).CrossRefGoogle Scholar
4.Chen, Y.L. and Stevens, R., J. Am. Ceram. Soc. 75 (5), 11421149 (1992).CrossRefGoogle Scholar
5.Majewski, P. J., Kaesche, S., and Aldinger, F., J. Am. Ceram. Soc. 80 (5), 11741180 (1997).CrossRefGoogle Scholar
6.Kaesche, S., Majewski, P., and Aldinger, F., J. Electron. Mater. 24 (12), 18291834 (1995).CrossRefGoogle Scholar
7.Kaesche, S., Majewski, P., and Aldinger, F., Z. Metallk. 87 (7), 587593 (1996).Google Scholar
8.Singh, J. P., Joo, J., Vasanthamohan, N., and Poeppel, R. B., J. Mater. Res. 8, 24582464 (1993).CrossRefGoogle Scholar
9.Joo, J., Singh, J.P., and Poeppel, R. B., Supercond. Sci. Technol. 5, 421428 (1993).CrossRefGoogle Scholar
10.Yoo, J. M. and Mukherjee, K., Physica C 222, 241251 (1994).CrossRefGoogle Scholar
11.Ahzi, S., Asaro, R. J., and Parks, D. M., Mech. Mater. 15, 201222 (1993).CrossRefGoogle Scholar
12.Morgan, P.E. D., Housley, R. M., Porter, J. R., and Ratto, J. J., Physica C 176, 279284 (1991).CrossRefGoogle Scholar
13.Morgan, P.E. D., Piche, J. D., and Housely, R.M., Physica C 191, 179184 (1992).CrossRefGoogle Scholar
14.Chen, Y.L. and Stevens, R., J. Am. Ceram. Soc. 75 (5), 11501159 (1992).CrossRefGoogle Scholar
15.Yamada, Y., Obst, B., and Flükiger, R., Supercond. Sci. Technol. 4, 165171 (1991).CrossRefGoogle Scholar
16.High, Y.E., Feng, Y., Sung, Y. S., Hellstrom, E. E., and Larbalestier, D. C., Physica C 220, 8192 (1994).CrossRefGoogle Scholar
17.Feng, Y., High, Y. E., Larbalestier, D. C., Sung, Y. S., and Hellstrom, E. E., Appl. Phys. Lett. 62 (13), 15531555 (1993).CrossRefGoogle Scholar
18.Luo, J. S., Merchant, N., Maroni, V.A., Riley, G. N. Jr, and Carter, W. L., Appl. Phys. Lett. 63 (5), 690692 (1993).CrossRefGoogle Scholar
19.Lelental, M., Blanton, T. N., Barnes, C. L., and Romanofsky, H. J., Physica C 193, 395400 (1992).CrossRefGoogle Scholar
20.Larbalestier, D. C., Cai, X. Y., Feng, Y., Edelman, H., Umezawa, A., Riley, G. N. Jr, and Carter, W. L., Physica C 221, 299303 (1994).CrossRefGoogle Scholar
21.Lelovic, M., Krishnaraj, P., Eror, N. G., and Balachandran, U., Physica C 242, 246250 (1995).CrossRefGoogle Scholar
22.Aota, K., Hattori, H., Hatano, T., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. Lett. 28 (12), L2196–L2199 (1989).CrossRefGoogle Scholar
23.Endo, U., Koyama, S., and Kawai, T., Jpn. J. Appl. Phys. Lett. 27 (8), L1476–L1479 (1989).CrossRefGoogle Scholar
24.Rubin, L.M., Orlando, T.P., Vander Sande, J.B., Gorman, G., Savoy, R., Swope, R., and Beyers, R., Appl. Phys. Lett. 61 (16), 19771979 (1992).CrossRefGoogle Scholar
25.Allemeh, S. M. and Sandhage, K. H., J. Am. Ceram. Soc. 78 (9), 25132520 (1994).CrossRefGoogle Scholar
26.MacManus-Driscoll, J. L., Bravman, J.C., Savoy, R.J., Gorman, G., and Beyers, R. B., J. Am. Ceram. Soc. 77 (9), 23052313 (1994).CrossRefGoogle Scholar
27.Zhu, W. and Nicholson, P. S., J. Appl. Phys. 73, 84238428 (1993).CrossRefGoogle Scholar
28.Tetenbaum, M., Hash, M., Tani, B. S., Luo, J. S., and Maroni, V. A., Physica C 249, 396402 (1995).CrossRefGoogle Scholar
29.Daümling, M., Maad, R., Jeremie, A., and Flükiger, R., J. Mater. Res. 12, 14451450 (1997).CrossRefGoogle Scholar
30.Idemoto, Y., Ichikawa, S., and Fueki, K., Physica C 181, 171178 (1991).CrossRefGoogle Scholar
31.Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W.L., Riley, G. N. Jr, and Sandhage, K. H., J. Appl. Phys. 72 (6), 23852389 (1993).CrossRefGoogle Scholar
32.Oh, S. S. and Osamura, K., Supercond. Sci. Technol. 4, 239243 (1991).CrossRefGoogle Scholar
33.Sung, Y. S. and Hellstrom, E. E., J. Am. Ceram. Soc. 78 (8), 20032008 (1995).CrossRefGoogle Scholar
34.Kusano, Y., Nanba, T., Takada, J., Egi, T., Ikeda, Y., and Takano, M., Physica C 219, 366370 (1994).CrossRefGoogle Scholar
35.Grivel, J. C. and Flükiger, R., Physica C 235–240, 505506 (1994).CrossRefGoogle Scholar
36.Xie, M., Zhang, L. W., Chen, T.G., Li, X. T., and Cai, J., Physica C 206, 251256 (1993).CrossRefGoogle Scholar
37.Parrell, J. A., Feng, Y., Dorris, S. E., and Larbalestier, D. C., J. Mater. Res. 11, 555564 (1996).CrossRefGoogle Scholar
38.MacManus-Driscoll, J., Bravman, J., and Beyers, R., Physica C 251, 7188 (1995).CrossRefGoogle Scholar
39.Moon, R., M.S. Thesis, Purdue University (Dec. 1996).Google Scholar
40.Guo, Y. C., Liu, H. K., and Dou, S. X., J. Mater. Res. 8, 21872190 (1993).CrossRefGoogle Scholar
41.McCallum, R.W., Dennis, K.W., Margulies, L., and Kramer, M.J., Proc. Symp. Processing of Long Length Superconductors (TMS, Warrendale, PA, 1994), pp. 195204.Google Scholar
42.Margulies, L., Dennis, K., Hofer, R., Kramer, M., and McCallum, R., Physica C 264, 133136 (1996).CrossRefGoogle Scholar
43.Misture, S.T., Matheis, D. P., Snyder, R. L., Blanton, T. N., Zorn, G. M., and Seebacher, B., Physica C 250, 175183 (1995).CrossRefGoogle Scholar
44.Misture, S.T., Seebacher, B., Hornung, R., Zorn, G. M., and Snyder, R. L., Physica C 235–240, 33973398 (1994).CrossRefGoogle Scholar
45.Jeremie, A., Grasso, G., and Flükiger, R., Physica C 255, 5360 (1995).CrossRefGoogle Scholar
46.Seibt, E.W., Jeremie, A., and Flükiger, R., Thin Solid Films 228, 196200 (1993).CrossRefGoogle Scholar
47.Zhang, W. and Hellstrom, E., Physica C 234, 137145 (1994).CrossRefGoogle Scholar
48.Moon, R., Trumble, K., and Bowman, K., in Impact of Recent Advances in Processing of Ceramic Superconductors, Ceramic Transactions, Vol. 84, edited by Wong-Ng, W., Balachandran, U., and Bhalla, A. S. (1998), pp. 105116.Google Scholar
49.Poirier, D.R. and Geiger, G. H., Transport Phenomena in Materials Processing (TMS, Warrendale, PA, 1994).Google Scholar