Skip to main content Accessibility help

Thermal conductivity of porous materials

  • David S. Smith (a1), Arnaud Alzina (a1), Julie Bourret (a1), Benoît Nait-Ali (a1), Fabienne Pennec (a1), Nicolas Tessier-Doyen (a1), Kodai Otsu (a2), Hideaki Matsubara (a3), Pierre Elser (a4) and Urs T. Gonzenbach (a4)...


Incorporation of porosity into a monolithic material decreases the effective thermal conductivity. Porous ceramics were prepared by different methods to achieve pore volume fractions from 4 to 95%. A toolbox of analytical relations is proposed to describe the effective thermal conductivity as a function of solid phase thermal conductivity, pore thermal conductivity, and pore volume fraction (νp). For νp < 0.65, the Maxwell–Eucken relation for closed porosity and Landauer relation for open porosity give good agreement to experimental data on tin oxide, alumina, and zirconia ceramics. For νp > 0.65, the thermal conductivity of kaolin-based foams and calcium aluminate foams was well described by the Hashin Shtrikman upper bound and Russell’s relation. Finally, numerical simulation on artificially generated microstructures yields accurate predictions of thermal conductivity when fine detail of the spatial distribution of the phases needs to be accounted for, as demonstrated with a bio-aggregate material.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Schulle, W. and Schlegel, E.: Fundamentals and properties of refractory thermal insulating materials (High-temperature insulating materials), in Ceramic Monographs – Handbook of Ceramics, Supplement to Interceram. 40(7), No. 2.6.3, 112 (1991).
2.Smith, D.S., Fayette, S., Grandjean, S., Martin, C., Telle, R., and Tonessen, T.: Thermal resistance of grain boundaries in alumina ceramics and refractories. J. Am. Ceram. Soc. 86, 105111 (2003).
3.Yang, H.S., Bai, G.R., Thompson, L.J., and Eastman, J.A.: Interfacial thermal resistance in nanocrystalline yttria stabilized zirconia. Acta Mater. 50, 23092317 (2002).
4.Michot, A., Smith, D.S., Degot, S., and Gault, C.: Thermal conductivity and specific heat of kaolinite: Evolution with thermal treatment. J. Eur. Ceram. Soc. 29, 347353 (2008).
5.Charvat, F.R. and Kingery, W.D.: Thermal conductivity: XIII, effect of microstructure on conductivity of single-phase ceramics. J. Am. Ceram. Soc. 40, 306315 (1957).
6.Bourret, J., Prudhomme, E., Rossignol, S., and Smith, D.S.: Thermal conductivity of geomaterial foams based on silica fume. J. Mater. Sci. 47, 391396 (2012).
7.Carslaw, H.S. and Jaeger, J.C.: Conduction of Heat in Solids (Oxford University Press, London, 1959).
8.Assael, M.J., Dix, M., Gialou, K., Vozar, L., and Wakeham, W.A.: Application of the transient hot-wire technique to the measurement of the thermal conductivity of solids. Int. J. Thermophys. 23(3), 615633 (2002).
9.Gustafsson, S.: Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62(3), 797804 (1991).
10.Degiovanni, A.: Thermal diffusivity and flash method. Rev. Gen. Therm. 185, 420441 (1977).
11.Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 16791684 (1961).
12.Klemens, P.G.: Thermal conductivity and lattice vibrational modes. Solid State Phys. 7, 198 (1958).
13.Berman, R.: The thermal conductivity of some polycrystalline solids at low temperatures. Proc. Phys. Soc. London, Sect. A 65, 10291040 (1952).
14.Raghavan, S., Wang, H., Dinwiddie, R.B., Porter, W.D., and Mayo, M.J.: The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scr. Mater. 39, 11191125 (1998).
15.Kittel, C.: Interpretation of the thermal conductivity of glasses. Phys. Rev. 75, 972974 (1949).
16.Fleig, J. and Maier, J.: A finite element study on the grain boundary impedance of different microstructures. J. Electrochem. Soc. 145, 20812089 (1998).
17.Smith, D.S., Grandjean, S., Absi, J., Founyapte Tonyo, S., and Fayette, S.: Grain boundary thermal resistance in polycrystalline oxides: Alumina, tin oxide and magnesia. High Temp. High Press. 3536, 9399 (2004).
18.Young, D.A. and Maris, H.J.: Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys. Rev. B: Condens. Matter 40, 36853693 (1989).
19.Collishaw, P.G. and Evans, J.R.G.: An assessment of expressions for the apparent thermal conductivity of cellular materials. J. Mater. Sci. 29, 22612273 (1994).
20.Loeb, A.L.: Thermal conductivity: VIII, a theory of thermal conductivity of porous materials. J. Am. Ceram. Soc. 37, 9699 (1954).
21.Maxwell, J.: A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1892).
22.Hashin, Z. and Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 31253131 (1962).
23.Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of medium. Philos. Mag. 5(34), 481502 (1892).
24.Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779784 (1952).
25.Ticha, G., Pabst, W., and Smith, D.S.: Predictive model for the thermal conductivity of porous materials with matrix-inclusion type microstructure. J. Mater. Sci. 40, 50455047 (2005).
26.Russell, H.: Principles of heat flow in porous insulators. J. Am. Ceram. Soc. 18, 15 (1935).
27.Ashby, M.F.: The properties of foams and lattices. Philos. Trans. R. Soc. London, Ser. A 364, 1530 (2006).
28.Litovsky, E., Shapiro, M., and Shavit, A.: Gas pressure and temperature dependances of thermal conductivity of porous ceramic materials: Part 2, refractories and ceramics with porosity exceeding 30%. J. Am. Ceram. Soc. 79(5), 13661376 (1996).
29.Reichenauer, G., Heinemann, U., and Ebert, H.P.: Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf., A 300, 204210 (2007).
30.Zeng, J.S.Q., Stevens, P.C., and Hunt, A.J.: Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel. Int. J. Heat Mass Transfer 39(11), 23112317 (1996).
31.Baillis, D. and Coquard, R.: Radiative and conductive thermal properties of foams, in Cellular and Porous Materials: Thermal Properties Simulation and Prediction, edited by A. Ochsner, G.E. Murch, and M.J.S. de Lemos (Wiley-VCH, Weinheim, 2008).
32.Grandjean, S.: Réponse thermique à l’échelle locale dans les matériaux céramiques, effets des pores et des joints de grains. Ph.D. Thesis, University of Limoges, 2002.
33.Turkes, P., Pluntke, C., and Helbig, R.: Thermal conductivity of SnO2 single crystals. J. Phys. C: Solid State Phys. 13, 49414951 (1980).
34.Zivcova, Z., Gregorova, E., Pabst, W., Smith, D.S., Michot, A., and Poulier, C.: Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 347353 (2009).
35.Nait-Ali, B., Haberko, K., Vesteghem, H., Absi, J., and Smith, D.S.: Thermal conductivity of highly porous zirconia. J. Eur. Ceram. Soc. 26, 35673574 (2006).
36.Bourret, J., Tessier-Doyen, N., Nait-Ali, B., Pennec, F., Alzina, A., Peyratout, C.S., and Smith, D.S.: Effect of pore volume fraction on the thermal conductivity and mechanical properties of kaolin based foams. J. Eur. Ceram. Soc. 33(9), 14871495 (2013).
37.Pennec, F., Alzina, A., Tessier-Doyen, N., Nait-Ali, B., and Smith, D.S.: Probabilistic thermal conductivity analysis of dense stabilized zirconia ceramics. Comput. Mater. Sci. 67, 207215 (2013).
38.Krauss Juillerat, F., Gonzenbach, U.T., Studart, A.R., Gauckler, L.J.: Self-setting particle-stabilized foams with hierarchical pore structures. Mater. Lett. 64, 14681470 (2010).
39.Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J.: Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45, 35263530 (2006).
40.Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J.: Stabilization of foams with inorganic colloidal particles. Langmuir 22, 1098310988 (2006).
41.Pennec, F., Alzina, A., Tessier-Doyen, N., Nait-Ali, B., Mati-Baouche, N., De Baynast, H., and Smith, D.S.: A combined finite-discrete element method for calculating the effective thermal conductivity of bio-aggregates based materials. Int. J. Heat Mass Transfer 60, 274283 (2013).

Thermal conductivity of porous materials

  • David S. Smith (a1), Arnaud Alzina (a1), Julie Bourret (a1), Benoît Nait-Ali (a1), Fabienne Pennec (a1), Nicolas Tessier-Doyen (a1), Kodai Otsu (a2), Hideaki Matsubara (a3), Pierre Elser (a4) and Urs T. Gonzenbach (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed