Skip to main content Accessibility help
×
Home

Texture development due to preferential grain growth of Ho–Ba–Cu–O in 1.6-T magnetic field

  • A. Holloway (a1), R.W. McCallum (a2) and S.R. Arrasmith (a2)

Abstract

It has been experimentally observed that the application of even a relatively weak magnetic field of 1.6 T during sintering of HoBa2Cu3O7-δ (hereafter HoBCO) results in a significant degree of grain alignment. The orientation of grains is found to be controlled by the direction and magnitude of a magnetic field. The degree of alignment was monitored by x-ray diffraction measurements on the flat surface of the samples and by metallography. It has been observed that the degree of alignment grows as the magnitude of the field increases between 0 and 1.6 T for a fixed temperature and processing time. The degree of alignment also increases when the processing temperature changes from 930 °C to 965 °C for a fixed field and time. It has also been observed that for both a fixed field and processing temperature, the alignment grows when the processing time increases between 16 and 72 h. Metallography measurements on the flat and cross-sectional parts of the samples showed that the texture propagates into the bulk of the samples. In the presence of a sufficient amount of the liquid phase, the enhancement of the grain growth in the direction favorable to the magnetic field produces rather large single crystals (0.3 to 0.5 mm linear size) within the sample.

Copyright

References

Hide All
1Dinger, T. R., Worthington, T. K., Gallagher, W. J., and Sandstrom, R. L., Phys. Rev. Lett. 58, 2687 (1987).
2Laibowitz, R.W., Koch, R.H., Chaudhari, P., and Gambino, R.J., Phys. Rev. B 35, 8821 (1987).
3Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).
4Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).
5Jin, S., Tiefel, T. H., Sherwood, R. C., Dover, R. B. van, Davis, M. E., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Phys. Rev. B 37, 7850 (1988).
6Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Dover, R. B. van, Kammlott, G.W., Fastnacht, R.A., and Keith, H.D., Appl. Phys. Lett. 52, 2074 (1988).
7Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).
8Chen, K., Hsu, S.W., Chen, T.L., Lan, S.D., Lee, W.H., and Wu, P.T., Appl. Phys. Lett. 56, 2675 (1990).
9Jin, S., Dover, R. B. van, Tiefel, T. H., Graebner, J. E., and Spencer, N. D., Appl. Phys. Lett. 58, 868 (1991).
10Farrell, D. E., Chandrasekhar, B. S., DeGuire, M. R., Fang, M. M., Kogan, V. G., Clem, J. R., and Finnemore, D. K., Phys. Rev. B 36, 4025 (1987).
11Arendt, R. H., Gaddipati, A. R., Garbauskas, M. F., Hall, E. L., Hart, H. R. Jr., Lay, K.W., Livingston, J.D., Luborsky, F. E., and Shilling, L.L., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 203.
12Ostertag, C.P., Shull, R. D., Vaudin, M. D., Blendell, J. E., Stearns, L. C., and Fuller, E. R. Jr., in Ceramic Superconductors II, edited by Yan, M. F. (The American Ceramic Society, Westerville, OH, 1988), p. 332.
13Chen, F., Zhang, B., Markiewicz, R. S., and Giessen, B. C., Appl. Phys. Lett. 58, 531 (1991); B.C. Giessen, R.S. Markiewicz, and F. Chen, U.S. patent #5114 905.
14Holloway, A., U.S. patent pending.
15Chen, K., Maheswaran, B., Liu, Y. P., Giessen, B. C., Chan, C., and Markiewicz, R. S., Appl. Phys. Lett. 55, 289 (1989).
16Lusnikov-Holloway, A., Miller, L. L., McCallum, R. W., Mitra, S., Lee, W. C., and Johnston, D. C., J. Appl. Phys. 65, 3136 (1989).
17Holloway, A., J. Appl. Phys. 70, 5716 (1991).
18Holloway, A., unpublished work.
19Holloway, A. and McCallum, R.W., U.S. patent #5 079 225.
20Rango, P. de, Lees, M., Lejay, P., Sulpice, A., Turnier, R., Ingold, M., Germi, P., and Pernet, M., Nature 349, 770 (1991).
21Lees, M. R., Bourgault, D., Rango, P. de, Lejay, P., Sulpice, A., and Turnier, R., Philos. Mag. B 65, 1405 (1992) .
22Lees, M. R., Bourgault, D., Bralthwalte, D., Rango, P. de, Lejay, P., Sulpice, A., and Turnier, R., Physica C 191, 414 (1992).
23Glowacki, B.A. and Evetts, J. E., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Sci. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 419.
24Livingston, J.D. and Hart, H.R. Jr., J. Appl. Phys. 64, 5806 (1988).
25Rango, P. de, Lees, M., Lejay, P., Sulpice, A., and Turnier, R., in Proc. Int. Conf., From Modern Superconductivity Towards Applications, edited by Turnier, R. and Suryanarayanan, R. (IITT International, Gournay-sur-Marne, 1990), p. 21 .
26Hannay, C., Cloots, R., and Ausloos, M., Solid State Commun. 83, 349 (1992).
27McKittrick, J. and Contreras, R., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992).

Texture development due to preferential grain growth of Ho–Ba–Cu–O in 1.6-T magnetic field

  • A. Holloway (a1), R.W. McCallum (a2) and S.R. Arrasmith (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed