Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T20:46:51.745Z Has data issue: false hasContentIssue false

Tetragonal to orthorhombic transformation during mullite formation

Published online by Cambridge University Press:  31 January 2011

Dong X. Li
Affiliation:
Chemical Engineering Department, Washington State University, Pullman, Washington 99164–2710
William J. Thomson
Affiliation:
Chemical Engineering Department, Washington State University, Pullman, Washington 99164–2710
Get access

Abstract

The mullite formation process in both single phase and diphasic sol-gel precursors to mullite was studied using dynamic x-ray diffraction (DXRD). A metastable, tetragonal-like mullite phase was observed in all the single gels at temperatures from 980 °C to 1200 °C, but not in any of the other precursors. The tetragonal to orthorhombic mullite transformation was very slow as the lattice parameters, a and b, split and moved gradually away from each other as a result of a gradual decrease of alumina content in the mullite solid solution with increasing temperature from 1100 °C to 1200 °C. The formation of tetragonal mullite coincides with that of the Al–Si spinel. The occurrence of tetragonal mullite or the spinel (or both) is determined mainly by the processing conditions of the sol-gel precursors.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bowen, N. L. and Greig, J. W., J. Am. Ceram. Soc. 7 (4), 238254 (1924).CrossRefGoogle Scholar
2Agrell, S. O. and Smith, J. V., J. Am. Ceram. Soc. 43 (2), 6976 (1960).CrossRefGoogle Scholar
3Aramaki, S. and Roy, R., J. Am. Ceram. Soc. 45 (5), 229242 (1962).CrossRefGoogle Scholar
4Ossaka, J., Nature (London) 191 (4792), 10001001 (1961).CrossRefGoogle Scholar
5Sadanaga, R., Tokonami, M., and Takeuchi, Y., Acta Cryst. 15, 6568 (1962).CrossRefGoogle Scholar
6Davis, R. F. and Pask, J. A., High Temperature Oxides, Part IV, edited by Alper, A. M. (Academic Press, New York, 1971), pp. 3776.Google Scholar
7Aksay, I. A. and Pask, J. A., J. Am. Ceram. Soc. 58 (11–12), 507512 (1975).CrossRefGoogle Scholar
8Cameron, W. E., Am. Ceram. Soc. Bull. 56 (11), 10031007 (1977).Google Scholar
9Cameron, W. E., Am. Mineralogist 62, 747755 (1977).Google Scholar
10Kriven, W. M. and Pask, J. A., J. Am. Ceram. Soc. 66 (9), 649654 (1983).CrossRefGoogle Scholar
11Klug, F. J., Prochazka, S., and Doremus, R. H., J. Am. Ceram. Soc. 70 (10), 750759 (1987).CrossRefGoogle Scholar
12Pollinger, J. P. and Messing, G. L., J. Mater. Res. 3, 375379 (1988).CrossRefGoogle Scholar
13Hoffman, D. W., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 67 (7), 468471 (1984).CrossRefGoogle Scholar
14Schneider, H. and Rymon-Lipinski, T., J. Am. Ceram. Soc. 71 (3), C162164 (1988).Google Scholar
15Li, D. X. and Thomson, W. J., “Effects of Hydrolysis on the Kinetics of High Temperature Transformations in Aluminosilicate Gels” (in press).Google Scholar
16Thomson, W. J., in Ceramics Transactions, Vol. 5, Advanced Characterization Techniques for Ceramics, edited by Young, W. S., McVay, G. L., and Pike, G. E. (The American Ceramic Society, Westerville, OH, 1989), pp. 131140.Google Scholar
17Li, D. X. and Thomson, W. J., “Mullite Formation from Nonstoichiometric Diphasic Precursors” (in review).Google Scholar
18Marple, B. R. and Green, D. J., J. Am. Ceram. Soc. 71 (11), C471474 (1988).CrossRefGoogle Scholar
19Marple, B. R. and Green, D. J., J. Am. Ceram. Soc. 72 (11), 20432048 (1989).CrossRefGoogle Scholar
20Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 70 (10), C245247 (1987).Google Scholar
21Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69 (9), 652656 (1986).CrossRefGoogle Scholar
22Li, D. X. and Thomson, W. J., J. Am. Ceram. Soc. 73 (4), 964969 (1990).CrossRefGoogle Scholar
23Wei, W. and Halloran, J. W., J. Am. Ceram. Soc. 71 (3), 166172 (1988).CrossRefGoogle Scholar
24Wei, W. and Halloran, J. W., J. Am. Ceram. Soc. 71 (7), 581587 (1988).CrossRefGoogle Scholar
25Li, D. X. and Thomson, W. J., J. Mater. Res. 5, 19631969 (1990).CrossRefGoogle Scholar
26Staley, W. and Brindley, G., J. Am. Ceram. Soc. 52 (11), 616619 (1969).CrossRefGoogle Scholar
27de Keyser, W. L., Science of Ceramics 2, 243 (1965).Google Scholar
28Davis, R. F. and Pask, J. A., J. Am. Ceram. Soc. 55 (10), 525531 (1972).CrossRefGoogle Scholar