Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T03:22:32.705Z Has data issue: false hasContentIssue false

Tert-butylamine and Allylamine as Reductive Nitrogen Sources in Atomic Layer Deposition of TaN Thin Films

Published online by Cambridge University Press:  31 January 2011

Petra Alén
Affiliation:
The Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
Marika Juppo
Affiliation:
The Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
Mikko Ritala
Affiliation:
The Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
Markku Leskelä
Affiliation:
The Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
Timo Sajavaara
Affiliation:
The Accelerator Laboratory, Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki, Finland
Juhani Keinonen
Affiliation:
The Accelerator Laboratory, Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki, Finland
Get access

Abstract

The atomic layer deposition technique was used to deposit TaN thin films from TaCl5 and TaBr5 and tert-butylamine or allylamine as a reductive nitrogen source with and without ammonia. The films were characterized with time-of-flight elastic recoil detection analysis, energy-dispersive x-ray spectroscopy, x-ray diffraction, and the standard four-point probe method. The films deposited from tert-butylamine and ammonia with both tantalum precursors had reasonably low halide contents. When allylamine was used as a nitrogen source, on the contrary, the films contained larger amounts of chlorine and other impurities. The resistivity increased markedly as the deposition temperature was decreased. The lowest resistivities (below 1500 μΩ cm) were obtained when the films were deposited from TaCl5 or TaBr5 with tert-butylamine at 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

The Chemistry of Metal CVD, edited by Kodas, T.T., and Hampden-Smith, M.J. (VCH, Verlagsgesellschaft mbH, Weinheim, Germany, and VCH Publishers Inc., New York, 1994), p. 178.CrossRefGoogle Scholar
CRC Handbook of Chemistry and Physics, 77th ed., edited by Lide, D. (CRC Press, Boca Raton, FL, 1996–1997), p. 454.Google Scholar
Kaloyeros, A.E., and Eisenbraun, E., Annu. Rev. Mater. Sci. 30, 363 (2000).CrossRefGoogle Scholar
CRC Handbook of Chemistry and Physics, 71th ed., edited by Lide, D. (CRC Press, Boston, MA, 1990–1991), p. 4109.Google Scholar
Ramberg, C.E., Blanquet, E., Pons, M., Bernard, C., and Madar, R., Microelectron. Eng. 50, 357 (2000).CrossRefGoogle Scholar
Tsai, M.H., Sun, S.C., Chiu, H.T., Tsai, C.E., and Chuang, S.H., Appl. Phys. Lett. 67, 1128 (1995).CrossRefGoogle Scholar
Chiu, H-T. and Chang, W-P., J. Mater. Sci. Lett. 11, 96 (1992).CrossRefGoogle Scholar
Chen, X., Frisch, H.L., Kaloyeros, A.E., Arkles, B., and Sullivan, J., J. Vac. Sci. Technol. B 17, 182 (1999).CrossRefGoogle Scholar
Suntola, T., Antson, J., Pakkala, A., and Lindfors, S., SID 80 Dig. 11, 109 (1980).Google Scholar
Suntola, T., Thin Solid Films 216, 84 (1992).CrossRefGoogle Scholar
Ritala, M. and Leskelä, M., Nanotechnology 10, 19 (1999).CrossRefGoogle Scholar
Ritala, M., Leskela¨, M., Dekker, J-P., Mutsaers, C., Soininen, P.J., and Skarp, J., Chem. Vap. Deposition 5, 7 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
Ale´n, P., Juppo, M., Ritala, M., Sajavaara, T., Keinonen, J., and Leskela¨, M., submitted to J. Electrochem. Soc.Google Scholar
Hiltunen, L., Leskela¨, M., Ma¨kela¨, M., Niinisto¨, L., Nyka¨nen, E., and Soininen, P., Thin Solid Films 166, 149 (1988).CrossRefGoogle Scholar
Ritala, M., Kalsi, P., Riihela¨, D., Kukli, K., Leskela¨, M., and Jokinen, J., Chem. Mater. 11, 1712 (1999).CrossRefGoogle Scholar
Juppo, M., Ritala, M., and Leskela¨, M., J. Electrochem. Soc. 147, 3377 (2000).CrossRefGoogle Scholar
Hahn, B., Deufel, M., Meier, M., Kastner, M.J., Blumberg, R., and Gebhardt, W., J. Cryst. Growth 170, 472 (1997).CrossRefGoogle Scholar
CRC Handbook of Chemistry and Physics, 77th ed., edited by Lide, D. (CRC Press, Boca Raton, FL, 1996–1997), p. 973.Google Scholar
Organometallic Vapor-Phase Epitaxy—Theory and Practise, Stringfellow, G.B. (Academic Press Inc., San Diego, CA, 1989), p. 181.Google Scholar
Winter, C.H., Jayaratne, K.C., and Proscia, J.W., in Covalent Cermics II: Non-Oxides, edited by Barron, A.R., Fischman, G.S., Fury, M.A., and Hepp, A.F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), p. 103.Google Scholar
Williams, K.B., Stewart, O., Reck, G.P., and Proscia, J.W., in Covalent Ceramics II: Non-Oxides, edited by Barron, A.R., Fischman, G.S., Fury, M.A., and Hepp, A.F. (Mater. Res. Soc. Symp. Proc. 327, Pittsburgh, PA, 1994), p. 121.Google Scholar
Scheper, J.T., Mesthrige, K.W., Proscia, J.W., Liu, G-Y., and Winter, C.H., Chem. Mater. 11, 3490 (1999).CrossRefGoogle Scholar
Waldo, R.A., Microbeam Anal. 310 (1988).Google Scholar
Jokinen, J., Keinonen, J., Tikkanen, P., Kuronen, A., Ahlgren, T., and Nordlund, K., Nucl. Instrum. Methods Phys. Res., Sect. B 119, 53 (1996).CrossRefGoogle Scholar
Jokinen, J., Haussalo, P., Keinonen, J., Ritala, M., Riihela¨, D., and Leskela¨, M., Thin Solid Films 289, 159 (1996).CrossRefGoogle Scholar
Zhang, Q.Y., Mei, X.X., Yang, D.Z., Chen, F.X., Ma, T.C., Wang, Y.M., and Teng, F.N., Nucl. Instrum. Methods Phys. Res., Sect. B 127/128, 664 (1997).CrossRefGoogle Scholar
Håkansson, G., Petrov, I., and Sundgren, J-E., J. Vac. Sci. Technol. A 8, 3769 (1990).CrossRefGoogle Scholar
Eizenberg, M., Littau, K., Ghanayem, S., Liao, M., Mosely, R., and Sinha, A.K., J. Vac. Sci. Technol. A. 13, 590 (1995).CrossRefGoogle Scholar
Eizenberg, M., Littau, K., Ghanayem, S., Mak, A., Maeda, Y., Chang, M., and Sinha, A.K., Appl. Phys. Lett. 65, 2416 (1994).CrossRefGoogle Scholar
Joint Committee on Powder Diffraction Standards, File No. 32–1283.Google Scholar