Skip to main content Accessibility help

Tensile deformation of anisotropic porous copper with directional pores

  • M. Tane, R. Okamoto and H. Nakajima (a1)


The tensile deformation of anisotropic porous copper with unidirectionally oriented cylindrical pores was investigated by an acoustic emission method. In the loadings parallel and perpendicular to the orientation direction of the pores, many cracks are formed after yielding and they strongly affect the deformation. The formed cracks rapidly grow and connect with each other near the peak stress of the stress–strain curve, thereby leading to final fracture. Crack formation is easier under perpendicular loading than under parallel loading, because high stress concentration and stress triaxiality occurs around the pores. As a result, the strength and elongation for perpendicular loading are much smaller than those for parallel loading. Furthermore, in the case of perpendicular loading, the localized deformation around pores drastically decreases the plastic Poisson's ratio. These results indicate that a porous copper macroscopically behaves as a semibrittle material under perpendicular loading, while the porous copper exhibits ductility under parallel loading.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.Metal Foams: A Design Guide (Butterworth-Heinemann, Burlington 2000)
2.Gibson, L.J., Ashby, M.F.Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK 1997)
3.Banhart, J.Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559 (2001)
4.Sugimura, Y., Meyer, J., He, M.Y., Bart-Smith, H., Grenstedt, J., Evans, A.G.On the mechanical performance of closed cell Al alloy foams. Acta Mater. 45, 5245 (1997)
5.Bart-Smith, H., Bastawros, A.F., Mumm, D.R., Evans, A.G., Sypeck, D.J., Wadley, H.N.G.Compressive deformation and yielding mechanisms in cellular Al alloys determined using x-ray tomography and surface strain mapping. Acta Mater. 46, 3583 (1998)
6.McCullough, K.Y.G., Fleck, N.A., Ashby, M.F.Uniaxial stress–strain behaviour of aluminum alloy foams. Acta Mater. 47, 2323 (1999)
7.Andrews, E., Sanders, W., Gibson, L.J.Compressive and tensile behaviour of aluminum foams. Mater. Sci. Eng., A 270, 113 (1999)
8.Markaki, A.E., Clyne, T.W.The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Mater. 49, 1677 (2001)
9.Motz, C., Pippan, R.Deformation behaviour of closed-cell aluminium foams in tension. Acta Mater. 49, 2463 (2001)
10.Amsterdam, E., de Vries, J.H.B., De Hosson, J.T.M., Onck, P.R.The influence of strain-induced damage on the mechanical response of open-cell aluminum foam. Acta Mater. 56, 609 (2008)
11.Shapovalov, V.Porous metals. MRS Bull. 19, (4)24 (1994)
12.Liu, Y., Li, Y., Zhang, H.Fabrication of lotus-structured porous magnesium with Gasar process. Acta Metall. Sinica 40, 1121 (2004)
13.Knacke, O., Probst, H., Wernekinck, J.On blow-hole formation during solidification of silver melts containing oxygen and copper melts containing oxygen and sulphur. Z. Metallkd. 70, 1 (1979)
14.Nakajima, H.Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091 (2007)
15.Nakajima, H., Hyun, S.K., Ohashi, K., Ota, K., Murakami, K.Fabrication of porous copper by unidirectional solidification under hydrogen and its properties. Colloids Surf., A 179, 209 (2001)
16.Tane, M., Ichitsubo, T., Hyun, S.K., Nakajima, H.Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis. J. Mater. Res. 20, 135 (2005)
17.Tane, M., Ichitsubo, T., Nakajima, H., Hyun, S.K., Hirao, M.Elastic properties of lotus-type porous iron: Acoustic measurement and extended effective-mean-field theory. Acta Mater. 52, 5195 (2004)
18.Ichitsubo, T., Tane, M., Ogi, H., Hirao, M., Ikeda, T., Nakajima, H.Anisotropic elastic constants of lotus-type porous copper: Measurements and micromechanics modeling. Acta Mater. 50, 4105 (2002)
19.Hyun, S.K., Murakami, K., Nakajima, H.Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng., A 299, 241 (2001)
20.Simone, A.E., Gibson, L.J.The tensile strength of porous copper made by the GASAR process. Acta Mater. 44, 1437 (1996)
21.Kovacik, J.The tensile behaviour of porous metals made by GASAR process. Acta Mater. 46, 5413 (1998)
22.Kujime, T., Tane, M., Hyun, S.K., Nakajima, H.Three-dimensional image-based modeling of lotus-type porous carbon steel and simulation of its mechanical behavior by finite element method. Mater. Sci. Eng., A 460, 220 (2007)
23.Kee, A., Matic, P., Popels, L.A two dimensional computational study of a gasar porous copper micro structure. Mater. Sci. Eng., A 225, 85 (1997)
24.Kee, A., Matic, P., Wolla, J.M.A computational study of elongated pore interactions in a low density porous copper. Mater. Sci. Eng., A 230, 14 (1997)
25.Park, J.S., Hyun, S.K., Suzuki, S., Nakajima, H.Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique. Acta Mater. 55, 5646 (2007)
26.Ogami, M.Acoustic Emission-Bases and Applications (Corona Publishing, Tokyo, Japan 1976)
27.ASM Handbook Vol. 12 (American Society for Metals, Materials Park, OH 1987)
28.Agogino, A.M.Notch effects, stress state, and ductility. J. Eng. Mater. Technol. 100, 348 (1978)
29.Knott, J.F.Fundamentals of Fracture Mechanics (Butterworth, London 1973)


Related content

Powered by UNSILO

Tensile deformation of anisotropic porous copper with directional pores

  • M. Tane, R. Okamoto and H. Nakajima (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.