Skip to main content Accessibility help
×
Home

The tensile and impact resistance properties of accumulative roll bonded Al6061 and AZ31 alloy plates

  • M. Ali Sarigecili (a1), Hasan H. Saygili (a1) and Benat Kockar (a1)

Abstract

Al6061 and AZ31 plates were processed using accumulative roll bonding (ARB) method up to two passes to produce laminated composites. The sandwich stacks of Al6061/AZ31/Al6061 were held at 450 °C for 10 min in a cubical furnace and rolled together with reduction of 50% in one pass. The microstructural investigations were done using optical and scanning electron microscopes. The structures of the interface, mechanical and drop impact properties of the laminated composites after the first and second passes were investigated and compared with Al6061 and AZ31 alloy plates. It was found that Al6061 improved the elongation to failure property of AZ31 after the first pass of ARB process and the drop impact properties of AZ31 after the first and second passes. However, elongation to failure magnitude with the uniaxial tensile loading decreased with increase in the number of passes due to the formation of brittle intermetallic between the Al6061/AZ31 nonuniform interfaces.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: benat@hacettepe.edu.tr

References

Hide All
1. Zhou, B. and Li, X.: Interfacial microstructure, bonding strength and fracture of magnesium–aluminum laminated composite plates fabricated by direct hot pressing. Mater. Sci. Eng., A 528, 6584 (2011).
2. Chang, H., Zheng, M.Y., Wu, K., Gan, W.M., Tong, L.B., and Brokmeier, H.G.: Microstructure and mechanical properties of the accumulative roll bonded (ARBed) pure magnesium sheet. Mater. Sci. Eng., A 527, 7176 (2010).
3. Chen, M.C., Hsieh, H.C., and Wu, W.: The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite. J. Alloys Compd. 416, 169 (2006).
4. Chang, H., Zheng, M.Y., Xu, C., Fan, G.D., Brokmeier, H.G., and Wu, K.: Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature. Mater. Sci. Eng., A 543, 249 (2012).
5. Chen, M-C., Kuo, C-W., Chang, C-M., Hsieh, C-C., Chang, Y-Y., and Wu, W.: Diffusion and formation of intermetallic compounds during accumulative roll-bonding of Al/Mg alloys. Mater. Trans. 48, 2595 (2007).
6. Slamova, M., Homola, P., and Karlık, M.: Thermal stability of twin-roll cast Al–Fe–Mn–Si sheets accumulative roll bonded at different temperatures. Mater. Sci. Eng., A 462, 106 (2007).
7. Liu, C.Y., Wang, Q., Jia, Y.Z., Jing, R., Zhang, B., Ma, M.Z., and Liu, R.P.: Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding. Mater. Sci. Eng., A 556, 1 (2012).
8. Zhang, X.P., Yang, T.H., Castagne, S., and Wang, J.T.: Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Mater. Sci. Eng., A 528, 1954 (2011).
9. Zhang, X.P., Yang, T.H., Castagne, S., Gu, C.F., and Wang, J.T.: Proposal of bond criterion for hot roll bonding and its application. Mater. Des. 32, 2239 (2011).
10. Bing, Z., Zhong-Wei, C., Shou-Qian, Y., and Tian-Li, Z.: Evolutions of microstructure for multilayered Al-Mg alloy composites by accumulation roll bonding (ARB) process. Adv. Mater. Res. 411, 527 (2012).
11. Zhang, X.P., Castagne, S., Yang, T.H., Gu, C.F., and Wang, J.T.: Entrance analysis of 7075 Al/Mg–Gd–Y–Zr/7075 Al laminated composite prepared by hot rolling and its mechanical properties. Mater. Des. 32, 1152 (2011).
12. Zhang, B-P., Tu, Y-F., Chen, J-Y., Zhang, H-L., Kang, Y-L., and Suzuki, H.G.: Preparation and characterization of as-rolled AZ31 magnesium alloy sheets. J. Mater. Process Technol. 184, 102 (2007).
13. Wu, K., Chang, H., Maawad, E., Gan, W.M., Brokmeier, H.G., and Zheng, M.Y.: Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Mater. Sci. Eng., A 527, 3073 (2010).
14. Zuo, Y. and Chang, Y.A.: Thermodynamic calculation of the Al-Mg phase diagram. CALPHAD 17, 161 (1993).
15. Brubaker, C. and Liu, Z-K.: Diffusion Couple Study of the Mg-Al System: Magnesium Technology, Luo, A.A. ed.; (TMS, The Minerals, Metals & Materials Soc., Wiley, Hoboken, NJ, 2004), p. 229.
16. Ren, Y.P., Qin, G.W., Li, S., Guo, Y., Shu, X.L., Dong, L.B., Liu, H.H., and Zhang, B.: Re-determination of γ/(γ + α-Mg) phase boundary and experimental evidence of R intermetallic compound existing at lower temperatures in the Mg–Al binary system. J. Alloys Compd. 540, 210 (2012).
17. Wang, Y., Luo, G., Zhang, J., Shen, Q., and Zhang, L.: Effect of silver interlayer on microstructure and mechanical properties of diffusion-bonded Mg–Al joints. J. Alloys Compd. 541, 458 (2012).
18. Lee, K.S., Kim, J.S., Jo, Y.M., Lee, S.E., Heo, J., Chang, Y.W., and Lee, Y.S.: Interface-correlated deformation behavior of a stainless steel-Al–Mg 3-ply composite. Mater. Charact. 75, 138 (2013).
19. Pärnänen, T., Alderliesten, R., Rans, C., Brander, T., and Saarela, O.: Applicability of AZ31B-H24 magnesium in fibre metal laminates – An experimental impact research. Composites: Part A 43, 1578 (2012).
20. Sadighi, M., Alderliesten, R.C., and Benedictus, R.: Impact resistance of fiber-metal laminates: A review. Int. J. Impact Eng. 49, 77 (2012).
21. Laliberte, J.F., Poon, C., Straznicky, P.V., and Fahr, A.: Post-impact fatigue damage growth in fiber–metal laminates. Int. J. Fatigue 24, 249 (2002).
22. Sadighi, M., Pärnänen, T., Alderliesten, R.C., Sayeaftabi, M., and Benedictus, R.: Experimental, and numerical Investigation of metal type and thickness effects on the impact resistance of fiber metal laminates. Appl. Compos. Mater. 19, 545 (2012).
23. Altenhof, W., Raczy, A., Laframboise, M., Loscher, J., and Alpas, A.: Numerical simulation of AM50A magnesium alloy under large deformation. Int. J. Impact Eng. 30, 117 (2004).
24. Tajally, M., Huda, Z., and Masjuki, H.H.: A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy. Int. J. Impact Eng. 37, 425 (2010).
25. Merlin, M., Timelli, G., Bonollo, F., and Garagnani, G.L.: Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. J. Mater. Process Technol. 209, 1060 (2009).
26. Hufenbach, W., Ullrich, H., Gude, M., Czulak, A., Malczyk, P., and Geske, V.: Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires. Arch. Civil Mech. Eng. 12, 265 (2012).
27. Ozden, S., Ekici, R., and Nair, F.: Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A 38, 484 (2007).
28. Liu, Y. and Liaw, B.: Drop-weight impact tests and finite element modeling of cast acrylic/aluminum plates. Polym. Test. 28, 808 (2009).
29. Cho, J.U., Hong, S.J., Lee, S.K., and Cho, C.: Impact fracture behavior at the material of aluminum foam. Mater. Sci. Eng. A 539, 250 (2012).
30. Liu, Y.X. and Liaw, B.M.: Drop-weight impact on fiber-metal laminates using various indenters. Proceedings of the SEM X International Congress & Exposition on Experimental and Applied Mechanics. Paper No. 386 (2004).

Keywords

The tensile and impact resistance properties of accumulative roll bonded Al6061 and AZ31 alloy plates

  • M. Ali Sarigecili (a1), Hasan H. Saygili (a1) and Benat Kockar (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.