Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T04:17:11.732Z Has data issue: false hasContentIssue false

Templated growth of a complex nitride island dispersion through an internal nitridation reaction

Published online by Cambridge University Press:  31 January 2011

M. P. Brady*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
D. T. Hoelzer
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
E. A. Payzant
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
P. F. Tortorelli
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
J. A. Horton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
I. M. Anderson
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
L. R. Walker
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
S. K. Wrobel
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee
*
a)Address all correspondence to this author.bradymp@ornl.gov
Get access

Abstract

A new synthesis route, based on internal oxidation reactions in multiphase alloys, is proposed for the controlled production of near-surface, complex ceramic-ceramic or ceramic-metallic composite structures. Using this approach, a microdispersion of a complex nitride perovskite, Cr3PtN, was formed in Cr2N or Cr(Pt) by internal nitridation of a two-phase Cr(Pt) + Cr3Pt precursor alloy. A framework for use of this phenomenon to synthesize island micro- (and potentially meso- or nano-) composite functional surface structures is presented.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Smith, C.S., Min. Met. 11, 213 (1930).Google Scholar
2Rhines, F.N., Trans. Am. Inst. Min. (Metall.) Eng. 137, 246 (1940).Google Scholar
3Meijering, J.L., in Advances in Materials Research, edited by Hermann, H. (Wiley, New York, 1971), Vol. 5, pp. 181.Google Scholar
4Swan, P.P., Weissmann, S., and Wriedt, D.F., Trans. Amer. Inst. Min. (Metall.) Eng. 230, 1306 (1964).Google Scholar
5Rapp, R.A., Corrosion 21, 382 (1965).CrossRefGoogle Scholar
6Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature 410, 63 (2001).CrossRefGoogle Scholar
7Kreuer, K.D., Chem Mater. 8, 610 (1996).CrossRefGoogle Scholar
8Ramirez, A.P., J. Phys. Condens. Matter 9, 8171 (1997).CrossRefGoogle Scholar
9Coey, J.M.D., Viret, M., and von Molnar, S., Adv Phys. 48, 167 (1999).CrossRefGoogle Scholar
10Niewa, R. and DiSalvo, F.J., Chem. Mater. 10, 2733 (1998).CrossRefGoogle Scholar
11Gregory, D.H., J. Chem. Soc., Dalton Trans. 259 (1999).CrossRefGoogle Scholar
12Megusar, J. and Meier, G.H., Metall. Trans. A 7, 1133 (1976).CrossRefGoogle Scholar
13Stringer, J., Corkish, P.S., Whittle, D.P., in Stress Effects and Oxidation of Metals, edited by Cathcart, J.V. (Met. Soc.AIME, New York, 1975), p. 75.Google Scholar
14Bastow, B.D., Wood, G.C., Whittle, D.P., Oxid. Met. 16, 1 (1981).CrossRefGoogle Scholar
15Wahl, G., Thin Solid Films 107, 417 (1983).CrossRefGoogle Scholar
16Wang, G., Gleeson, B., and Douglass, D.L., Oxid. Met. 35, 333 (1991).CrossRefGoogle Scholar
17Gesmundo, F. and Gleeson, B., Oxid. Met. 44, 211 (1995).CrossRefGoogle Scholar
18Spengler, H., Metall. 13, 646 (1959).Google Scholar
19Gesmundo, F., Niu, Y., and Viani, F., Oxid. Met. 43, 379 (1995).CrossRefGoogle Scholar
20Nardin, M., Lorthioir, G., Barberon, M., Madar, R., Fruchart, E., and Fruchart, R., C.R. Acad. Sci. Paris 274, 2168 (1972).Google Scholar
21Larson, A.C. and von Dreele, R.B., GSAS–General Structure Analysis System, LAUR 86-748, Los Alamos, NM (GSAS For Macintosh copyright A.C. Larson, 2001).Google Scholar
22Buxton, B.F., Eades, J.A., Steeds, J.W., and Rackham, G.M., Philos. Trans. R. Soc. 281, 181 (1976).Google Scholar
23Laflamme, G.R. and Morral, J.E., Acta Metall. 26, 1791 (1978).CrossRefGoogle Scholar
24Ohriner, E.K. and Morral, J.E., Scripta Met. 13, 7 (1979).CrossRefGoogle Scholar