Skip to main content Accessibility help

Temperature dependence of static and dynamic magnetic properties in NiFe/IrMn bilayer system

  • Faris Basheer Abdulahad (a1), Dung-Shing Hung (a2) and Shang-Fan Lee (a3)


A systematic experimental study on the exchange bias (EB) effect in a ferromagnet/antiferromagnet bilayer system is performed both in the static (dc) and dynamic (high frequency) timescale to clarify the effects of temperature and antiferromagnetic (AFM) layer thickness on the system's stability and magnetic properties. Our system consists of NiFe/IrMn. Both parallel and perpendicular domain walls are suggested to explain the static EB and coercivity behaviors. In the microwave region, peaks, which can only be suppressed at high temperatures with strong external fields, were observed in the AFM thickness dependencies of the dynamic effective field and resonance frequency. The temperature dependence of both static and dynamic parameters suggests different values of Néel temperatures. The dynamic results show a rotatable anisotropy contribution, which has a peak value at the blocking temperature and vanishes at the dynamic Néel temperature.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Meiklejohn, W.H. and Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102(5), 1413 (1956).
2. Meiklejohn, W.H. and Bean, C.P.: New magnetic anisotropy. Phys. Rev. 105(3), 904 (1957).
3. Nogues, J. and Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192(2), 203 (1999).
4. Kiwi, M.: Exchange bias theory. J. Magn. Magn. Mater. 234(3), 584 (2001).
5. Stiles, M.D. and McMichael, R.D.: Coercivity in exchange-bias bilayers. Phys. Rev. B 63(6), 064405 (2001).
6. McMichael, R.D., Stiles, M.D., Chen, P.J., and Egelhoff, W.F.: Ferromagnetic resonance studies of NiO-coupled thin films of Ni80Fe20 . Phys. Rev. B 58(13), 8605 (1998).
7. Rubinstein, M., Lubitz, P., and Cheng, S.F.: Ferromagnetic-resonance field shift in an exchange-biased CoO/Ni80Fe20 bilayer. J. Magn. Magn. Mater. 195(2), 299 (1999).
8. Hu, J.G., Jin, G.J., and Ma, Y.Q.: Ferromagnetic resonance and exchange anisotropy in ferromagnetic/antiferromagnetic bilayers. J. Appl. Phys. 91(4), 2180 (2002).
9. Lubitz, P., Krebs, J.J., Miller, M.M., and Cheng, S.: Temperature dependence of ferromagnetic resonance as induced by NiO pinning layers. J. Appl. Phys. 83(11), 6819 (1998).
10. Meiklejohn, W.H.: Exchange anisotropy—A review. J. Appl. Phys. 33(3), 1328 (1962).
11. Nogues, J., Sort, J., Langlais, V., Skumryev, V., Surinach, S., Munoz, J.S., and Baro, M.D.: Exchange bias in nanostructures. Phys. Rep. 422(3), 65 (2005).
12. Yang, P.Y., Song, C., Fan, B., Zeng, F., and Pan, F.: The role of rotatable anisotropy in the asymmetric magnetization reversal of exchange biased NiO/Ni bilayers. J. Appl. Phys. 106(1), 013902 (2009).
13. Stamps, R.L.: Mechanisms for exchange bias. J. Phys. D: Appl. Phys. 33(23), R247 (2000).
14. Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., and Mauri, D.: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43(1), 1297 (1991).
15. Chappert, C., Fert, A., and Nguyen Van Dau, F.: The emergence of spin electronics in data storage. Nat. Mater. 6, 813 (2007).
16. You, C.Y., Goripati, H.S., Furubayashi, T., Takahashi, Y.K., and Hono, K.: Exchange bias of spin valve structure with a top-pinned Co40Fe40B20/IrMn. Appl. Phys. Lett. 93(1), 012501 (2008).
17. Stoecklein, W., Parkin, S.S.P., and Scott, J.C.: Ferromagnetic resonance studies of exchange-biased permalloy thin films. Phys. Rev. B 38(10), 6847 (1988).
18. Kuanr, B.K., Camley, R.E., and Celinski, Z.: Exchange bias of NiO/NiFe: Linewidth broadening and anomalous spin-wave damping. J. Appl. Phys. 93(10), 7723 (2003).
19. Queste, S., Dubourg, S., Acher, O., Barholz, K.U., and Mattheis, R.: Exchange bias anisotropy on the dynamic permeability of thin NiFe layers. J. Appl. Phys. 95(11), 6873 (2004).
20. Lamy, Y. and Viala, B.: NiMn, IrMn, and NiO exchange coupled CoFe multilayers for microwave applications. IEEE Trans. Magn. 42(10), 3332 (2006).
21. Phuoc, N.N., Lim, S.L., Xu, F., Ma, Y.G., and Ong, C.K.: Enhancement of exchange bias and ferromagnetic resonance frequency by using multilayer antidot arrays. J. Appl. Phys. 104(9), 093708 (2008).
22. Phuoc, N.N., Xu, F., and Ong, C.K.: Ultrawideband microwave noise filter: Hybrid antiferromagnet/ferromagnet exchange-coupled multilayers. Appl. Phys. Lett. 94(9), 092505 (2009).
23. O’Grady, K., Fernandez-Outon, L.E., and Vallejo-Fernandez, G.: A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322(8), 883 (2010).
24. Chen, X., Ma, Y.G., and Ong, C.K.: Magnetic anisotropy and resonance frequency of patterned soft magnetic strips. J. Appl. Phys. 104(1), 013921 (2008).
25. Chai, G., Yang, Y., Zhu, J., Lin, M., Sui, W., Guo, D., Li, X., and Xue, D.: Adjust the resonance frequency of (Co90Nb10/Ta)n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers. Appl. Phys. Lett. 96(1), 012505 (2010).
26. Phuoca, N.N., Hungb, L.T., and Ong, C.K.: Ultra-high ferromagnetic resonance frequency in exchange-biased system. J. Alloys Compd. 506(2), 504 (2010).
27. Takano, K., Kodama, R.H., Berkowitz, A.E., Cao, W., and Thomas, G.: Interfacial uncompensated antiferromagnetic spins: role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers. Phys. Rev. Lett. 79(6), 1130 (1997).
28. Takano, K., Kodama, R.H., Berkowitz, A.E., Cao, W., and Thomas, G.: Role of interfacial uncompensated antiferromagnetic spins in unidirectional anisotropy in Ni81Fe19/CoO bilayers. J. Appl. Phys. 83(11), 6888 (1998).
29. Stiles, M.D. and McMichael, R.D.: Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59(5), 3722 (1999).
30. Moran, T.J., Gallego, J.M., and Schuller, I.K.: Increased exchange anisotropy due to disorder at permalloy/CoO interfaces. J. Appl. Phys. 78(3), 1887 (1995).
31. Nogués, J., Moran, T.J., Lederman, D., Schuller, I.K., and Rao, K.V.: Role of interfacial structure on exchange-biased FeF2−Fe. Phys. Rev. B 59(10), 6984 (1999).
32. Scholl, A., Nolting, F., Stohr, J., Regan, T., Luning, J., Seo, J.W., Locquet, J-P., Fompeyrine, J., Anders, S., Ohldag, H., and Padmore, H.A.: Exploring the microscopic origin of exchange bias with photoelectron emission microscopy. J. Appl. Phys. 89(11), 7266 (2001).
33. Kuch, W., Offi, F., Chelaru, L.I., Kotsugi, M., Fukumoto, K., and Kirschner, J.: Magnetic interface coupling in single-crystalline Co/Fe Mn bilayers. Phys. Rev. B 65(14), 140408(R) (2002).
34. Martinez, B., Obradors, X., Balcells, Ll., Rouanet, A., and Monty, C.: Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys. Rev. Lett. 80(1), 181 (1998).
35. Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., and Nogues, J.: Beating the superparamagnetic limit with exchange bias. Nature 423, 850 (2003).
36. te Velthuis, S.G., Felcher, G.P., Jiang, J.S., Inomata, A., Nelson, C.S., Berger, A., and Bader, S.D.: Magnetic configurations in exchange-biased double superlattices. Appl. Phys. Lett. 75(26), 4174 (1999).
37. Yuan, F-T., Lin, J-K., Yao, Y.D., and Lee, S-F.: Exchange bias in spin glass (FeAu)/NiFe thin films. Appl. Phys. Lett. 96(16), 162502 (2010).
38. Peng, D.L., Sumiyama, K., Hihara, T., Yamamuro, S., and Konno, T.J.: Magnetic properties of monodispersed Co/CoO clusters. Phys. Rev. B 61(4), 3103 (2000).
39. Malozemoff, A.P.: Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35(7), 3679 (1987).
40. Mauri, D., Siegmann, H.C., Bagus, P.S., and Kay, E.: Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys. 62(7), 3047 (1987).
41. Koon, N.: Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett. 78(25), 4865 (1997).
42. Schulthess, T.C. and Butler, W.H.: Consequences of spin-flop coupling in exchange biased films. Phys. Rev. Lett. 81(20), 4516 (1998).
43. Wee, L., Stamps, R.L., and Camley, R.E.: Temperature dependence of domain-wall bias and coercivity. J. Appl. Phys. 89(11), 6913 (2001).
44. Schulthess, T.C. and Butler, W.H.: Coupling mechanisms in exchange biased films. J. Appl. Phys. 85(8), 5510 (1999).
45. Malozemoff, A.P.: Mechanisms of exchange anisotropy. J. Appl. Phys. 63(8), 3874 (1988).
46. de Almeida, J.R.L. and Rezende, S.M.: Microscopic model for exchange anisotropy. Phys. Rev. B 65(9), 092412 (2002).
47. Nowak, U., Misra, A., and Usadel, K.D.: Domain state model for exchange bias. J. Appl. Phys. 89(11), 7269 (2001).
48. Xi, H. and White, R.M.: Antiferromagnetic thickness dependence of exchange biasing. Phys. Rev. B 61(1), 80 (2000).
49. Fulcomer, E. and Charap, S.H.: Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling. J. Appl. Phys. 43(10), 4190 (1972).
50. Soeya, S., Imagawa, T., Mitsuoka, S., and Narishige, S.: Distribution of blocking temperature in bilayered Ni81Fe19/NiO films. J. Appl. Phys. 76(9), 5356 (1994).
51. Baltz, V., Sort, J., Rodmacq, B., Dieny, B., and Landis, S.: Thermal activation effects on the exchange bias in ferromagnetic-antiferromagnetic nanostructures. Phys. Rev. B 72(10), 104419 (2005).
52. Baltz, V., Rodmacq, B., Zarefy, A., Lechevallier, L., and Dieny, B.: Bimodal distribution of blocking temperature in exchange-biased ferromagnetic/antiferromagnetic bilayers. Phys. Rev. B 81(5), 052404 (2010).
53. Safeer, C.K., Chamfrault, M., Allibe, J., Carretero, C., Deranlot, C., Jacquet, E., Jacquot, J-F., Bibes, M., Barthelemy, A., Dieny, B., Bea, H., and Baltz, V.: Anisotropic bimodal distribution of blocking temperature with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 100(7), 072402 (2012).
54. Ventura, J., Araujo, J.P., Sousa, J.B., Veloso, A., and Freitas, P.P.: Distribution of blocking temperatures in nano-oxide layers of specular spin valves. J. Appl. Phys. 101(11), 113901 (2007).
55. Ali, M., Adie, P., Marrows, C.H., Greig, D., Hickey, B.J., and Stamps, R.L.: Exchange bias using a spin glass. Nat. Mater. 6, 70 (2007).
56. Yuan, F.T., Yao, Y.D., Lee, S.F., and Hsu, J.H.: Coercive mechanism and training effect in Fe-Au/Ni-Fe bilayer films. J. Appl. Phys. 109(7), 07E148 (2011).
57. Biternas, A.G., Nowak, U., and Chantrell, R.W.: Training effect of exchange-bias bilayers within the domain state model. Phys. Rev. B 80(13), 134419 (2009).
58. Gruyters, M.: Spin-glass-like behavior in CoO nanoparticles and the origin of exchange bias in layered CoO/ferromagnet structures. Phys. Rev. Lett. 95(7), 077204 (2005).
59. Ercole, A., Fujimoto, T., Patel, M., Daboo, C., Hicken, R.J., and Bland, A.C.: Direct measurement of magnetic anisotropies in epitaxial FeNi/Cu/Co spin-valve structures by Brillouin light scattering. J. Magn. Magn. Mater. 156(1–3), 121 (1996).
60. Miller, B.H. and Dan Dahlberg, E.: Use of the anisotropic magnetoresistance to measure exchange anisotropy in Co/CoO bilayers. Appl. Phys. Lett. 69(25), 3932 (1996).
61. Strom, V., Jonsson, B.J., Rao, K.V., and Dahlberg, D.: Determination of exchange anisotropy by means of ac susceptometry in Co/CoO bilayers. J. Appl. Phys. 81(8), 5003 (1997).
62. Abdulahad, F.B., Hung, D.S., Chiu, Y.C., and Lee, S.F.: Exchange bias effect on the relaxation behavior of the IrMn/NiFe bilayer system. IEEE Trans. Magn. 47(10), 4227 (2011).
63. Philipps, T.G. and Rosenberg, H.M.: Spin waves in ferromagnets. Rep. Prog. Phys. 29(1), 285 (1966).
64. Heinrich, B. and Cochran, J.F.: Ultrathin metallic magnetic films: Magnetic anisotropies and exchange interactions. Adv. Phys. 42(5), 523 (1993).
65. Farle, M.: Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61(7), 755 (1998).
66. Adam, J.D. and Stitzer, S.N.: A magnetostatic wave signal-to-noise enhancer. Appl. Phys. Lett. 36(6), 485 (1980).
67. Ishak, W.S.: Magnetostatic wave technology: A review. Proc. IEEE 76(2), 171 (1988).
68. How, H., Hu, W., Vittoria, C., Kempel, L.C., and Trott, K.D.: Single-crystal yttrium iron garnet phase shifter at X band. J. Appl. Phys. 85(8), 4853 (1999).
69. Cramer, N., Lucic, D., Camley, R.E., and Celinski, Z.: High attenuation tunable microwave notch filters utilizing ferromagnetic resonance. J. Appl. Phys. 87(9), 6911 (2000).
70. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M. L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).
71. Seu, K.A., Huang, H., Lesoine, J.F., Showman, H.D., Egelhoff, W.F., Gan, L., and Reilly, A.C.: Co layer thickness dependence of exchange biasing for IrMn/Co and FeMn/Co. J. Appl. Phys. 93(10), 6611 (2003).
72. Jungblut, R., Coehoorn, R., Johnson, M.T., aan de Stegge, J., and Reinders, A.: Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers. J. Appl. Phys. 75(10), 6659 (1994).
73. Phuoc, N.N., Chen, H.Y., and Ong, C.K.: Effect of antiferromagnetic thickness on thermal stability of static and dynamic magnetization of NiFe/FeMn multilayers. J. Appl. Phys. 113(6), 063913 (2013).
74. Ali, M., Marrows, C.H., Al-Jawad, M., Hickey, B.J., Misra, A., Nowak, U., and Usadel, K.D.: Antiferromagnetic layer thickness dependence of the IrMn/Co exchange-bias system. Phys. Rev. B 68(21), 214420 (2003).
75. Gloanec, M., Rioual, S., Lescop, B., Zuberek, R., Szymczak, R., Aleshkevych, P., and Rouvellou, B.: Temperature dependence of exchange bias in NiFe/FeMn bilayers. Phys. Rev. B 82(14), 144433 (2010).
76. Chen, H.Y., Phuoc, N. N., and Ong, C. K.: Thermal stability of exchange-biased NiFe/FeMn multilayered thin films. J. Appl. Phys. 112(5), 053920 (2012).
77. McCord, J., Mattheis, R., and Elefant, D.: Dynamic magnetic anisotropy at the onset of exchange bias: The NiFe/IrMn ferromagnet/antiferromagnet. Phys. Rev. B 70(9), 094420 (2004).
78. Steenbeck, K., Mattheis, R., and Diegel, M.: Antiferromagnetic energy loss and exchange coupling of IrMn/CoFe films: Experiments and simulations. J. Magn. Magn. Mater. 279(2–3), 317 (2004).
79. McCord, J., Kaltofen, R., Gemming, T., Hühne, R., and Schultz, L.: Aspects of static and dynamic magnetic anisotropy in Ni81Fe19-NiO films. Phys. Rev. B 75(13), 134418 (2007).
80. Liu, H.Y., Wang, Z.K., Lim, H.S., Ng, S.C., Kuok, M.H., Lockwood, D.J., Cottam, M.G., Nielsch, K., and Gösele, U.: Magnetic-field dependence of spin waves in ordered permalloy nanowire arrays in two dimensions. J. Appl. Phys. 98(4), 046103 (2005).
81. Youssef, J.B., Castel, V., Vukadinovic, N., and Labrune, M.: Spin-wave resonances in exchange-coupled permalloy/garnet bilayers. J. Appl. Phys. 108(6), 063909 (2010).
82. Awad, A.A., Lara, A., Metlushko, V., Guslienko, K.Y., and Aliev, F.G.: Broadband probing magnetization dynamics of the coupled vortex state permalloy layers in nanopillars. Appl. Phys. Lett. 100(26), 262406 (2012).
83. Demand, M., Oropesa, A.E., Kenane, S., Ebels, U., Huynen, I., and Piraux, L.: Ferromagnetic resonance studies of nickel and permalloy nanowire arrays. J. Magn. Magn. Mater. 249(1–2), 228 (2002).
84. Lin, C.S., Lim, H.S., Wang, Z.K., Ng, S.C., and Kuok, M.H.: Band gap parameters of one-dimensional bicomponent nanostructured magnonic crystals. Appl. Phys. Lett. 98(2), 022504 (2011).
85. Fukumoto, K., Kuch, W., Vogel, J., Camarero, J., Pizzini, S., Offi, F., Pennec, Y., Bonfim, M., Fontaine, A., and Kirschner, J.: Mobility of domain wall motion in the permalloy layer of a spin-valve-like Fe20Ni80/Cu/Co trilayer. J. Magn. Magn. Mater. 293(3), 863 (2005).
86. Mathon, J. and Ahmad, S.B.: Quasi-two-dimensional behavior of the surface magnetization in a ferromagnet with softened surface exchange. Phys. Rev. B 37(1), 660 (1988).
87. Kittel, C.: Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, New York, NY, 2005).
88. Xi, H., Rantschler, J., Mao, S, Kief, M.T., and White, R.M.: Interface coupling and magnetic properties of exchange-coupled Ni81Fe19/Ir22Mn78 bilayers. J. Phys. D: Appl. Phys. 36(13), 1464 (2003).
89. Tripathy, D., Adeyeye, A.O., and Singh, N.: Exchange bias in nanoscale antidot arrays. Appl. Phys. Lett. 93(2), 022502 (2008).
90. Kim, J.V. and Stamps, R.L.: Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects. Phys. Rev. B 71(9), 094405 (2005).
91. Nikitenko, V.I., Gornakov, V.S., Shapiro, A.J., Shull, R.D., Liu, K., Zhou, S.M., and Chien, C.L.: Asymmetry in elementary events of magnetization reversal in a ferromagnetic/antiferromagnetic bilayer. Phys. Rev. Lett. 84(4), 765 (2000).
92. Leighton, C., Fitzsimmons, M.R., Hoffmann, A., Dura, J., Majrkzak, C.F., Lund, M.S., and Schuller, I.K.: Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 65(6), 064403 (2002).
93. Aley, N.P., Fernandez, G.V., Kroeger, R., Lafferty, B., Agnew, J., Lu, Y., and O’Grady, K.: Texture effects in IrMn/CoFe exchange bias systems. IEEE Trans. Magn. 44(11), 2820 (2008).
94. Ali, M., Marrows, C.H., and Hickey, B.J.: Onset of exchange bias in ultrathin antiferromagnetic layers. Phys. Rev. B 67(17), 172405 (2003).
95. Ambrose, T. and Chien, C.L.: Dependence of exchange coupling on antiferromagnetic layer thickness in NiFe/CoO bilayers. J. Appl. Phys. 83(11), 6822 (1998).
96. Stiles, M.D. and McMichael, R.D.: Temperature dependence of exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 60(18), 12950 (1999).
97. Fernandez, G.V., Outon, L.E.F., and O’Grady, K.: Antiferromagnetic grain volume effects in metallic polycrystalline exchange bias systems. J Phys. D: Appl. Phys. 41(11), 112001 (2008).

Related content

Powered by UNSILO

Temperature dependence of static and dynamic magnetic properties in NiFe/IrMn bilayer system

  • Faris Basheer Abdulahad (a1), Dung-Shing Hung (a2) and Shang-Fan Lee (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.