Skip to main content Accessibility help

Tailoring singlewalled carbon nanotubes for hydrogen storage

  • M.K. Haas (a1), J.M. Zielinski (a1), G. Dantsin (a1), C.G. Coe (a1), G.P. Pez (a1) and A.C. Cooper (a1)...


Hydrogen isotherms on a variety of single-walled carbon nanotube (SWNT) samples were measured using a differential pressure adsorption apparatus, which provides highly accurate data. A number of these SWNT samples were modified by a non-destructive cutting process, which reduced the aspect ratio of the nanotube bundles by two orders of magnitude. There were no apparent differences in the microporosity of SWNT as a function of aspect ratio. The adsorption of helium on SWNT is shown to be non-negligible and results in artificially low hydrogen capacities using conventional adsorption methodology. With no accounting for helium adsorption, the hydrogen adsorption results show that cut and uncut SWNT have similar hydrogen capacities of <1 wt% at 25 °C and pressures up to 110 bar. However, an analysis of hydrogen capacity versus N2 Brunauer–Emmett–Teller surface area suggests that there is an enhanced heat of adsorption of hydrogen for SWNT versus activated carbon.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Hynek, S., Fuller, W. and Bentley, J.: Hydrogen storage by carbon sorption. Int. J. Hydrogen Energy 22, 601 (1997).
2.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S. and Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).
3.Dillon, A.C. and Heben, M.J.: Hydrogen storage using carbon adsorbents: Past, present and future. Appl. Phys. A 72, 133 (2001).
4.Tibbetts, G.G., Meisner, G.P. and Olk, C.H.: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39, 2291 (2001).
5.Cheng, H., Pez, G.P. and Cooper, A.C.: Mechanism of hydrogen sorption in single-walled carbon nanotubes. J. Am. Chem. Soc. 123, 5845 (2001).
6.Kostov, M.K., Cheng, H., Cooper, A.C. and Pez, G.P.: The influence of carbon curvature on molecular adsorptions in carbon-based materials: A force field approach. Phys. Rev. Lett. 89, 146105 (2002).
7.Cheng, H., Cooper, A.C., Pez, G.P., Kostov, M.K., Piotrowski, P. and Stuart, S.J.: Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Phys. Chem. B 109, 3780 (2005).
8.Kuznetsova, A., Yates, J.T. Jr., Liu, J. and Smalley, R.E.: Physical adsorption of xenon in open single walled carbon nanotubes: Observation of a quasi-one-dimensional confined Xe phase. J. Chem. Phys. 112, 9590 (2000).
9.Talapatra, S., Zambano, A.Z., Weber, S.E. and Migone, A.D.: Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Phys. Rev. Lett. 85, 138 (2000).
10.Chiang, I.W., Brinson, B.E., Huang, A.Y., Willis, P.A., Bronikowski, M.J., Margrave, J.L., Smalley, R.E. and Hauge, R.H.: Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 105, 8297 (2001).
11.Strong, K.L., Anderson, D.P., Lafdi, K. and Kuhn, J.N.: Purification process for single-wall carbon nanotubes. Carbon 41, 1477 (2003).
12.Heben, M.J., Dillon, A.C., Gennett, T., Alleman, J.L., Parilla, P.A., Jones, K.M. and Hornyak, G.L.: Rapid, room temperature, high-density hydrogen adsorption on single-walled carbon nanotubes at atmospheric pressure assisted by a metal alloy, in Nanotubes and Related Materials, edited by Rao, A.M. (Mater. Res. Soc. Symp. Proc. 633, Warrendale, PA, 2001), p. A9.1.
13.Haluska, M., Hulman, M., Hirscher, M., Becher, M., Becher, M., Roth, S., Stepanek, I. and Bernier, P.: Hydrogen storage in mechanically treated single wall carbon nanotubes. Electron. Properties Molec. Nanostruct. CP591, 603 (2001).
14.O’Connell, M., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B. and Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 26 (2002).
15.Smalley, R.E., Colbert, D. and Dai, H.: Carbon nanotubes purified under oxidizing conditions after being made by using high mass energy beam of high mass atoms, ultrasound, or reflux. European Patent No. EP 1 375 460 A2 (2004).
16.Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriquez-Macias, F., Shon, Y-S., Lee, T.R., Colbert, D.T. and Smalley, R.E.: Fullerene pipes. Science 280, 1253 (1998).
17.Jeong, S.H., Lee, O.J. and Lee, K.H.: Preparation of aligned carbon nanotubes with prescribed dimensions: Template synthesis and sonication cutting approach. Chem. Mater. 14, 1859 (2002).
18.Gu, Z., Hauge, R.H., Smalley, R.E. and Margrave, J.L.: Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2, 1009 (2002).
19.Margrave, J.L., Gu, Z., Hauge, R.H. and Smalley, R.E.: Method for cutting single-walled carbon nanotubes through fluorination. U.S. Patent No. 0 009 114, A1 (2004).
20.Green, M. and Hodder, L.: Opening and Filling Carbon Nanotubes: WO 96/09246 (1996).
21.Tsang, S.C., Chen, Y.K., Harris, P. and Green, M.: A simple chemical method of opening and filling carbon nanotubes. Nature 272, 159 (1994).
22.Smalley, R.E., Colbert, D.T., Dai, H., Liu, J., Rinzler, A.G., Hafner, J.H., Smith, K., Guo, T., Nikolaev, P., and Thess, A.: Method for Cutting Nanotubes. U.S. Patent No. 0 094 311 (2002).
23.Chambers, G., Carroll, C., Farrell, G.F., Dalton, A.B., McNamara, M., Panhuis, M. and Byrne, H.J.: Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett. 3, 843 (2003).
24.Pierard, N., Fonseca, A., Konya, Z., Williams, I., Van Tendeloo, G. and Nagy, J.B.: Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 1 (2001).
25.Niesz, K., Siska, A., Vesselenyi, I., Hernadi, K., Mehn, D., Galbacs, G., Konya, Z. and Kiricsi, I.: Mechanical and chemical breaking of multiwalled carbon nanotubes. Catal. Today 76, 3 (2002).
26.Vesselenyi, I., Siska, A., Mehn, D., Niesz, K., Konya, Z., Nagy, J.B. and Kirics, I.: Modification of multiwalled carbon nanotubes by different breaking processes. J. Physics IV France 12, 107 (2002).
27.Stepanek, I., Maurin, G., Bernier, P., Gavillet, J. and Loiseau, A.: Cutting single wall carbon nanotubes, in Amorphous and Nanostructured Carbon, edited by Sullivan, J.P., Robertson, J., Zhao, O., Allen, T.B., and Coll, B.F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000), p. 119.
28.Maurin, G., Stepanek, I., Bernier, P., Colomer, J.F., Nagy, J.B. and Henn, F.: Segmented and opened multi-walled carbon nanotubes. Carbon 39, 1273 (2001).
29.Zhang, M., Yudasaka, M., Koshio, A. and Iijima, S.: Effect of polymer and solvent on purification and cutting of single-wall carbon nanotubes. Chem. Phys. Lett. 349, 25 (2001).
30.Zhang, M., Yudasaka, M., Koshio, A. and Iijima, S.: Structure of single-wall carbon nanotubes purified and cut using polymer. Appl. Phys. A 74, 7 (2002).
31.Sloan, J., Hammer, J., Zwiefka-Sibley, M. and Green, M.L.H.: The opening and filling of single-walled carbon nanotubes. Chem. Commun. 3, 347 (1998).
32.Chen, J., Dyer, M.J. and Foo, M.F.: Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 123, 6201 (2001).
33.Saito, R., Jorio, A., Filho, A.G.S., Dresselhaus, G., Dresselhaus, M.S., Gruneis, A., Canado, L.G. and Pimenta, M.A.: First and second order resonance Raman process in graphite and single-wall carbon nanotubes. Jpn. J. Appl. Phys. 41, 4878 (2002).
34.Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S.: Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997).
35.Dillon, A.C., Yudasaka, M. and Dresselhaus, M.S.: Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J. Nanosci. Nanotechnol. 4, 691 (2004).
36.Dillon, A.C., Parilla, P.A, Alleman, J.L., Gennett, T., Jones, K.M. and Heben, M.J.: Systematic inclusion of defects in pure single-wall nanotubes and their effect on the Raman d-band. Chem. Phys. Lett. 401, 522 (2005).
37.Sieverts, A.: Towards the knowledge of occlusions and diffusion of gases through metals. Z. Phys. Chem. 60, 129 (1907).
38.Zielinski, J. M., Coe, C. G., Nickel, R. J., Romeo, A. M., Cooper, A. C., and Pez, G. P.: High pressure sorption isotherms via differential pressure measurements. Langmuir (submitted 2005).
39.Dreisbach, F.: Measurement of H2 adsorption on activated carbon, rubotherm Präzisionsmeßtechnik GmbH, Bochum, Germany (2004, private communication).
40.Li, Z., Pan, Z. and Dai, S.: Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. J. Colloid Surf. Sci. 277, 35 (2004).
41.Li, F., Wang, Y., Wang, D. and Wei, F.: Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 42, 2375 (2004).
42.Anson, A., Jagiello, J., Parra, J.B., Sanjuan, M.L., Benito, A.M., Maser, W.K. and Martinez, M.T.: Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J. Phys. Chem. B 108, 15820 (2004).
43.Poirier, E., Chahine, R. and Bose, T.K.: Hydrogen adsorption in carbon nanostructures. Int. J. Hydrogen Energy 26, 831 (2001).
44.Pradhan, B.K., Harutyunyan, A.R., Stojkovic, D., Grossman, J.C., Zhang, P., Cole, M.W., Crespi, V., Goto, H., Fujiwara, J. and Eklund, P.C.: Large cryogenic storage of hydrogen in carbon nanotubes at low pressures. J. Mater. Res. 17, 2209 (2002).
45.Takagi, H., Hatori, H., Soneda, Y., Yoshizawa, N. and Yamada, Y.: Adsorptive hydrogen storage in carbon and porous materials. Mater. Sci. Eng. B108, 143 (2004).
46.Schlapbach, L. and Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).
47.Pace, E.L. and Siebert, A.R.: Heat of adsorption of parahydrogen and orthodeuterium on graphon. J. Phys. Chem. 63, 1398 (1959).
48.Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R. and Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13, 539 (1997).
49.Sircar, S.: Gibbsian surface excess for gas adsorption—Revisited. Ind. Eng. Chem. Res. 38, 3670 (1999).
50.Sircar, S.: Measurement of Gibbsian surface excess. AIChE J. 47, 1169 (2001).
51.Liu, C., Yang, H., Tong, Y., Cong, H.T. and Cheng, H.M.: Volumetric hydrogen storage in single-walled carbon nanotubes. Appl. Phys. Lett. 80, 2389 (2002).


Related content

Powered by UNSILO

Tailoring singlewalled carbon nanotubes for hydrogen storage

  • M.K. Haas (a1), J.M. Zielinski (a1), G. Dantsin (a1), C.G. Coe (a1), G.P. Pez (a1) and A.C. Cooper (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.