Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-07T20:34:25.701Z Has data issue: false hasContentIssue false

Synthesizing Nanocrystalline Carbon Thin Films by Hot Filament Chemical Vapor Deposition and Controlling Their Microstructure

Published online by Cambridge University Press:  31 January 2011

S. Gupta*
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PO Box 23343, PR00931, U.S.A.
B. R. Weiner
Affiliation:
Department of Chemistry, University of Puerto Rico, San Juan, PO Box 23346, PR00931, U.S.A.
G. Morell
Affiliation:
Department of Physical Sciences, University of Puerto Rico, San Juan, PO Box 23323, PR00931, U.S.A.
*
a)Address all correspondence to this author. aa973600@rrpac.upr.clu.edu
Get access

Abstract

Nanocrystalline carbon (n-C) thin films were deposited on Mo substrates using methane (CH4) and hydrogen (H2) by the hot-filament chemical vapor deposition (HFCVD) technique. Process parameters relevant to the secondary nucleation rate were systematically varied (0.3–2.0% methane concentrations, 700–900 °C deposition temperatures, and continuous forward and reverse bias during growth) to study the corresponding variations in film microstructure. Standard nondestructive complementary characterization tools such as scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy were utilized to obtain a coherent and comprehensive picture of the microstructure of these films. Through these studies we obtained an integral picture of the material grown and learned how to control key material properties such as surface morphology (faceted versus evenly smooth), grain size (microcrystalline versus nanocrystalline), surface roughness (from rough 150 rms to smooth 70 rms), and bonding configuration (sp3 C versus sp2 C), which result in physical properties relevant for several technological applications. These findings also indicate that there exist fundamental differences between HFCVD and microwave CVD (MWCVD) for methane concentrations above 1%, whereas some similarities are drawn among films grown by ion-beam assisted deposition, HFCVD assisted by low-energy particle bombardment, and MWCVD using noble gas in replacement of traditionally used hydrogen.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachmann, P.K. and Messier, R., Chem. Eng. News 67, 24 (1989).CrossRefGoogle Scholar
Pickles, C.S.J., Brandon, J.R., Joe, S.E., and Schaich, T.J., Diamond Relat. Mater. 11 (2001, in press).Google Scholar
Field, J.E., The Properties of Diamonds (Academic Press, London, United Kingdom, 1979).Google Scholar
John, P., Diamond Relat. Mater. 11, (2001, in press).Google Scholar
Cui, J.B., Robertson, J., and Milne, W.I., Diamond Relat. Mater. 10, 868 (2001) and references therein.CrossRefGoogle Scholar
Gupta, S., Katiyar, R.S., Gilbert, D.R., Singh, R.K., and Morell, G., J. Appl. Phys. 88, 5695 (2000) and references therein.CrossRefGoogle Scholar
Weide, J. Van der and Nemanich, R.J., Appl. Phys. Lett. 62, 1878 (1993).CrossRefGoogle Scholar
Weide, J. Van der and Nemanich, R.J., Phys. Rev. B 49, 13 629 (1994).Google Scholar
Chen, K.H., Lai, Y.L., Chen, L.C., Wu, J.Y., and Kao, F.J., Thin Solid Films 270, 143 (1995).CrossRefGoogle Scholar
Yarbrough, W.A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
Ulczynski, M.J., Reinhard, D.K., Prytajko, M., and Amusen, J., in Advances in New Diamond Science and Technology, Proceedings of the 4th International Conference on New Diamond Science and Technology, Kobe, Japan, 1994, edited by Kaito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yihikawa, M.. (MYU, Tokyo, Japan, 1994), p. 41.Google Scholar
Spencer, E.G., Schmidt, P.H., Roy, D.C., and Salsalone, F.J., Appl. Phys. Lett. 29, 118 (1976).CrossRefGoogle Scholar
Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
Gruen, D., Ann. Rev. Mater. Sci. 29, 211 (1999) and references therein.CrossRefGoogle Scholar
Lifshitz, Y., in The Physics of Diamond, Proceedings of the International school of Physics “Enrico Fermi,” Course CXXXV, edited by Paoletti, A. and Tucciarone, A. (IOS Press, Amsterdam, The Netherlands, 1997), pp. 209211.Google Scholar
For review, see: Lifshitz, Y., Diamond Relat. Mater. 8, 1659 (1999).Google Scholar
Grill, A., Diamond Relat. Mater. 8, 428 (1999) and references therein.CrossRefGoogle Scholar
Mckenzie, D.R., Rep. Prog. Phys. 59, 1611 (1996).CrossRefGoogle Scholar
Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953 (1971).CrossRefGoogle Scholar
Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
Yarbrough, W.A. and Roy, R., in EA-15, Diamond and Diamondlike Material Synthesis, edited by Johnson, G.H., Geis, M.W., and Badzian, A.R. (1988) p. 77.Google Scholar
Mirtich, M.J., Mater. Sci. Forum, 52 & 53, 217 (1989).Google Scholar
Bhusari, D.M., Yang, J.R., Wang, T.Y., Lin, S.T., Chen, K.H., and Chen, L.C., Solid State Commun. 107, 301 (1998) and references therein.CrossRefGoogle Scholar
Sharda, T., Rahaman, M.M., Nukaya, Y., Soga, T., Jimbo, T., and Umeno, M., Diamond Relat. Mater. 10, (2001).Google Scholar
Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A.R., and Auciello, O., J. Appl. Phys. 90, 183 (2001) and references therein.CrossRefGoogle Scholar
Nistor, L.C., Landuyt, J. Van, Ralchenko, V.G., Obraztsova, E.D., and Smolin, A.A., Diamond Relat. Mater. 6, 159 (1997) and references therein.CrossRefGoogle Scholar
Corrigan, T.D., Krauss, A.R., Gruen, D.M., Auciello, O., and Chang, R.P.H., Amorphous and Nanostructured Carbon, edited by Robertson, J., Sullivan, J.P., Zhou, O., Allen, T.B., and Coll, B.F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000), p. 233.Google Scholar
Morrison, N.A., Muhl, S., Rodil, S.E., Ferrari, A.C., Nesladek, M., Milne, W.I., and Robertson, J., Phys. Status Solidi A 172, 79 (1999).3.0.CO;2-C>CrossRefGoogle Scholar
Alterowitz, S.A., Warner, J.D., Liu, D.C., and Pouch, J.J., J. Electrochem. Soc. 133, 2339 (1986).CrossRefGoogle Scholar
Mckenzie, D.R., Muller, D.A., and Paithorpe, B.A., Phy. Rev. Lett. 67, 773 (1991).CrossRefGoogle Scholar
Robertson, J., Philos. Mag. B 76, 335 (1997) and references therein.CrossRefGoogle Scholar
Gupta, S., Weiss, B.L., Weiner, B.R., and Morell, G., J. Appl. Phys. 89, 5671 (2001); O. Gröning, O.M. Küttel, P. Gröning, and L. Schlapbach, J. Vac. Sci. Technol., B 15, 1970 (1999) and references therein.CrossRefGoogle Scholar
Hong, B., Lee, J., Collins, R.W., Kuang, Y., Drawl, W., Messier, R., Tsong, T.T., and Strausser, Y.F., Diamond Relat. Mater. 6, 55 (1997).CrossRefGoogle Scholar
Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46, 146 (1985).CrossRefGoogle Scholar
Kersten, H. and Kroesen, G.M.W., J. Vac. Sci. Technol., A 8, 38 (1990).CrossRefGoogle Scholar
Möller, W., Fukarek, W., Lange, K., Keudell, A. von, and Jacob, W., Jpn. J. Appl. Phys. 34, 2163 (1995).CrossRefGoogle Scholar
Gupta, S., Weiner, B.R., and Morell, G., Diamond Relat. Mater. 11, (2001, in press).Google Scholar
Gupta, S., Weiner, B.R., and Morell, G., Diamond Relat. Mater. 11, (2001, in press); G. Morell, L.M. Cancel, O.L. Figueroa, and B.R. Weiner, J. Appl. Phys. 88, 5716 (2000).Google Scholar
Celli, F.G. and Butler, J.E., Annu. Rev. Phys. Chem. 42, 643 (1991).CrossRefGoogle Scholar
Lang, T., Stiegler, J., Y. von Kaenel, and Blank, E., Diamond Relat. Mater. 5, 1171 (1996).CrossRefGoogle Scholar
Connel, L.L., Fleming, J.W., Chu, H-N., Vestyck, D.J. Jr., Jensen, E., and Butler, J.E., J. Appl. Phys. 78, 3622 (1995).CrossRefGoogle Scholar
Cullity, B.D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), pp. 102111.Google Scholar
Goodwin, D.G., J. Appl. Phys. 74, 6888 (1993).CrossRefGoogle Scholar
Butler, J.E. and Woodin, R.L., Philos. Trans. R. Soc. London 342, 209 (1993).Google Scholar
Brosseau, C., Boulic, F., Queffelec, P., Bourbigot, C., Mest, Y. Le, Loaec, J., and Beroual, A., J. Appl. Phys. 81, 882 (1997) and references therein.CrossRefGoogle Scholar
Hsu, W., J. Appl. Phys. 72, 3102 (1992).CrossRefGoogle Scholar
Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., J. Appl. Phys. 73, 3041 (1993).CrossRefGoogle Scholar
Wada, N. and Solin, A., Physica 105B, 353 (1989).Google Scholar
Chhowalla, M., Ferrari, A.C., Robertson, J., and Amaratunga, G.A.J., Appl. Phys. Lett. 76, 1419 (2000).CrossRefGoogle Scholar
Yoshikawa, M., Mater. Sci. Forum 52, 53, 365 (1989) and references therein.CrossRefGoogle Scholar
Nemanich, R.J., Glass, J.T., Luckovsky, G., and Schröder, R.E., J. Vac. Sci. Technol. 6, 17831787 (1988); R.C. Hyer, M. Green, and S.C. Sharma, Phys. Rev. B 49, 14573 (1994).CrossRefGoogle Scholar
Bachmann, P.K., Leers, D., and Lydtin, H., Diamond Relat. Mater. 1, 383 (1991).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J., Phys. Rev. B 61, 14 095 (2000).CrossRefGoogle Scholar
Krishnan, K.M., Blake, D.F., Freund, F., and Lipari, R.J., in EA-15, Diamond and Diamond-like Material Synthesis, edited by Johnson, G.H., Geis, M.W., and Badzian, A.R. (1988), p. 7 and references therein.Google Scholar
Ritchie, R.H., Phys. Rev. 106, 874 (1957).CrossRefGoogle Scholar
Kasi, S.R., Kang, H., and Rabalais, J.W., J. Chem. Phys. 88, 5914 (1988).CrossRefGoogle Scholar
Chourasia, R., Chopra, D.R., Sharma, S.C., Green, M., Dark, C.A., and Hyer, R.C., Thin Solid Films 193–194, 1079 (1990).CrossRefGoogle Scholar
Waite, M.M. and Shah, S.I., Appl. Phys. Lett. 60, 2344 (1992).CrossRefGoogle Scholar
Qin, L.C., Zhou, D., Krauss, A.R., and Gruen, D.M., Nanostruct. Mater. 10, 649 (1998).CrossRefGoogle Scholar
Aronson, A.J., The Art of Sputtering Process Development (Materials Research Corp., Santa Barbara, CA, 1984).Google Scholar
Roberston, J., Prog. Solid State Chem. 21, 199 (1991).Google Scholar
González, J.A., Figueroa, O.L., Weiner, B.R., and Morell, G., J. Mater. Res. 16, 293 (2001).CrossRefGoogle Scholar
Campbell, B. and Mainwood, A., Phys. Status Solidi A 181, 99 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
Levy, P.W. and Kammerer, O.F., Phys. Rev. 100, 1787 (1955).CrossRefGoogle Scholar
Ashida, K., Kanamori, K., Ichimura, K., Matsuyama, M., and Watnabe, K., J. Nucl. Mater. 137, 288 (1986).CrossRefGoogle Scholar
Thornton, J.A., Annu. Rev. Mater. Sci. 7, 1239 (1977).CrossRefGoogle Scholar
Sato, Y., Sato, K., Tanaka, H., Fujita, K., and Matsuda, S., J. Mater. Sci. 23, 842 (1988).CrossRefGoogle Scholar
Heitz, T., Drévillon, B., Godet, C., and Bourée, J.E., Carbon 37, 771 (1999).CrossRefGoogle Scholar
Frenklach, M. and Spear, K.E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
Akita, N., Konishi, Y., Ogura, S., Imamura, M., Hu, Y.H., and Shi, X., Diamond Relat. Mater. 10, 1017 (2001).CrossRefGoogle Scholar
Lifshitz, Y., Kasi, S.R., and Rabalais, J.W., Mater. Sci. Forum 52, 53, 237 (1989).CrossRefGoogle Scholar
Meyers, R.A., in Encyclopaedia of Modern Physics (Academic Press Inc., New York, 1990), pp. 568571.Google Scholar
Eto, H., Tamou, Y., Oshawa, Y., and Kikuchi, N., Diamond Relat. Mater. 1, 372 (1992).CrossRefGoogle Scholar
Illie, A., Ferrari, A.C., Yagi, T., and Robertson, J., Appl. Phys. Lett. 76, 2627 (2000).CrossRefGoogle Scholar
Gupta, S., Weiner, B.R., and Morell, G., Appl. Phys. Lett. 80, 1471 (2002).CrossRefGoogle Scholar
Robertson, J. and O’Reilly, E.P., Phys. Rev. B35, 2946 (1987).CrossRefGoogle Scholar
Kwo, J-L., Yokoyama, M., and Lin, I-N., Appl. Surf. Sci. 142, 521 (1999).CrossRefGoogle Scholar
Evans, S. and Thomas, J.M., Proc. R. Soc. London, Ser. A 353, 103 (1977).Google Scholar