Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T01:52:49.345Z Has data issue: false hasContentIssue false

Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications

Published online by Cambridge University Press:  07 August 2013

Lei Bi
Affiliation:
Physical Sciences and Engineering Division, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Enrico Traversa*
Affiliation:
Physical Sciences and Engineering Division, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
*
a)Address all correspondence to this author. e-mail: enrico.traversa@kaust.edu.sa
Get access

Abstract

Solid oxide fuel cells (SOFCs) offer an efficient energy conversion technology for alleviating current energy problems. High temperature proton-conducting (HTPC) oxides are promising electrolytes for this technology, since their activation energy is lower than that of conventional oxygen-ion conductors, enabling the operating temperature reduction at 600 °C. Among HTPC oxides, doped BaZrO3 materials possess high chemical stability, needed for practical applications. Though, poor sinterability and the resulting large volume of highly resistive grain boundaries hindered their deployment for many years. Nonetheless, the recently demonstrated high proton conductivity of the bulk revived the attention on doped BaZrO3, stimulating research on solving the sintering issues. The proper selection of dopants and sintering aids was demonstrated to be successful for improving the BaZrO3 electrolyte sinterability. We here briefly review the synthesis strategies proposed for preparing BaZrO3-based nanostructured powders for electrolyte and electrodes, with the aim to improve the SOFC performance.

Type
Reviews
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stambouli, A.B. and Traversa, E.: Fuel cells, an alternative to standard sources of energy. Renewable Sustainable Energy Rev. 6, 295 (2002).CrossRefGoogle Scholar
Wachsman, E.D., Marlowe, C.A., and Lee, K.T.: Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ. Sci. 5, 5498 (2012).CrossRefGoogle Scholar
Stambouli, A.B. and Traversa, E.: Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable Sustainable Energy Rev. 6, 433 (2002).CrossRefGoogle Scholar
Han, M.F., Tang, X.L., Yin, H.Y., and Peng, S.P.: Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165, 757 (2007).CrossRefGoogle Scholar
Chen, K.F., Lu, Z., Chen, X.J., Ai, N., Huang, X.Q., Du, X.B., and Su, W.H.: Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films. J. Power Sources 172, 742 (2007).CrossRefGoogle Scholar
Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
Wachsman, E.D. and Lee, K.T.: Lowering the temperature of solid oxide fuel cells. Science 334, 935 (2011).CrossRefGoogle ScholarPubMed
deSouza, S., Visco, S.J., and DeJonghe, L.C.: Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte. J. Electrochem. Soc. 144, L35 (1997).CrossRefGoogle Scholar
Dong, D.H., Liu, M.F., Xie, K., Sheng, J., Wang, Y.H., Peng, X.B., Liu, X.Q., and Meng, G.Y.: Improvement of cathode-electrolyte interfaces of tubular solid oxide fuel cells by fabricating dense YSZ electrolyte membranes with indented surfaces. J. Power Sources 175, 201 (2008).CrossRefGoogle Scholar
Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).CrossRefGoogle ScholarPubMed
Ishihara, T., Matsuda, H., and Takita, Y., Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 (1994).CrossRefGoogle Scholar
Esposito, V. and Traversa, E.: Design of electroceramics for solid oxide fuel cell applications: Playing with ceria. J. Am. Ceram. Soc. 91, 1037 (2008).CrossRefGoogle Scholar
Ahn, J.S., Pergolesi, D., Camaratta, M.A., Yoon, H.S., Lee, B.W., Lee, K.T., Jung, D.W., Traversa, E., and Wachsman, E.D.: High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochem. Commun. 11, 1504 (2009).CrossRefGoogle Scholar
Bozza, F., Polini, R., and Traversa, E.: High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3−δ electrolyte films prepared by electrophoretic deposition. Electrochem. Commun. 11, 1680 (2009).CrossRefGoogle Scholar
Iwahara, H., Esaka, T., Uchida, H., and Maeda, N.: Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen-production. Solid State Ionics 34, 359 (1981).CrossRefGoogle Scholar
Iwahara, H.: High-temperature proton conducting oxides and their applications to solid electrolyte fuel-cells and steam electrolyzer for hydrogen-production. Solid State Ionics 28, 573 (1988).CrossRefGoogle Scholar
Iwahara, H., Uchida, H., and Morimoto, K.: High-temperature solid electrolyte fuel-cells using perovskite-type oxide based on BaCeO3 . J. Electrochem. Soc. 137, 462 (1990).CrossRefGoogle Scholar
Fabbri, E., Pergolesi, D., and Traversa, E.: Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 39, 4355 (2010).CrossRefGoogle ScholarPubMed
Omata, T. and Otsuka-Yao-Matsuo, S.: Electrical properties of proton-conducting Ca2+-doped La2Zr2O7 with a pyrochlore-type structure. J. Electrochem. Soc. 148, E252 (2001).CrossRefGoogle Scholar
Haugsrud, R. and Norby, T.: Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nature Mater. 5, 193 (2006).CrossRefGoogle Scholar
Kawasaki, Y., Okada, S., Ito, N., Matsumoto, H., and Ishihara, T.: Proton conduction and chemical stability of (La0.5Sr0.5)(Mg0.5+yNb0.5−y)O3−δ . Mater. Res. Bull. 44, 457 (2009).CrossRefGoogle Scholar
Kreuer, K.D.: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333 (2003).CrossRefGoogle Scholar
Zuo, C.D., Zha, S.W., Liu, M.L., Hatano, M., and Uchiyama, M.: BaZr0.1Ce0.7Y0.2O3−δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater. 18, 3318 (2006).CrossRefGoogle Scholar
Fabbri, E., Bi, L., Pergolesi, D., and Traversa, E.: Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 24, 195 (2012).CrossRefGoogle ScholarPubMed
Iwahara, H., Yajima, T., Hibino, T., Ozaki, K., and Suzuki, H.: Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61, 65 (1993).CrossRefGoogle Scholar
Katahira, K., Kohchi, Y., Shimura, T., and Iwahara, H.: Protonic conduction in Zr-substituted BaCeO3 . Solid State Ionics 138, 91 (2000).CrossRefGoogle Scholar
Phair, J.W. and Badwal, S.P.S.: Review of proton conductors for hydrogen separation. Ionics 12, 103 (2006).CrossRefGoogle Scholar
Zhong, Z.M.: Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems. Solid State Ionics 178, 213 (2007).CrossRefGoogle Scholar
Fabbri, E., D'Epifanio, A., Di Bartolomeo, E., Licoccia, S., and Traversa, E.: Tailoring the chemical stability of BaCe0.8−xZrxY0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179, 558 (2008).CrossRefGoogle Scholar
Fabbri, E., Pergolesi, D., D'Epifanio, A., Di Bartolomeo, E., Balestrino, G., Licoccia, S., and Traversa, E.: Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Energy Environ. Sci. 1, 355 (2008).CrossRefGoogle Scholar
Peng, R.R., Wu, Y., Yang, L.Z., and Mao, Z.Q.: Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics 177, 389 (2006).Google Scholar
Meulenberg, W.A., Serra, J.M., and Schober, T.: Preparation of proton conducting BaCe0.8Gd0.2O3 thin films. Solid State Ionics 177, 2851 (2006).CrossRefGoogle Scholar
Wu, T.Z., Peng, R.R., and Xia, C.R.: Sm0.5Sr0.5CoO3−δ-BaCe0.8Sm0.2O3−δ composite cathodes for proton-conducting solid oxide fuel cells. Solid State Ionics 179, 1505 (2008).CrossRefGoogle Scholar
Bi, L., Zhang, S.Q., Fang, S.M., Zhang, L., Gao, H.Y., Meng, G.Y., and Liu, W.: In situ fabrication of a supported Ba3Ce1.18Nb1.82O9−δ membrane electrolyte for a proton-conducting SOFC. J. Am. Ceram. Soc. 91, 3806 (2008).CrossRefGoogle Scholar
Zunic, M., Chevallier, L., Deganello, F., D'Epifanio, A., Licoccia, S., Di Bartolomeo, E., and Traversa, E.: Electrophoretic deposition of dense BaCe0.9Y0.1O3−x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells. J. Power Sources 190, 417 (2009).CrossRefGoogle Scholar
Bi, L., Tao, Z.T., Sun, W.P., Zhang, S.Q., Peng, R.R., and Liu, W.: Proton-conducting solid oxide fuel cells prepared by a single step co-firing process. J. Power Sources 191, 428 (2009).CrossRefGoogle Scholar
Fabbri, E., Licoccia, S., Traversa, E., and Wachsman, E.D.: Composite cathodes for proton conducting electrolytes. Fuel Cells 9, 128 (2009).CrossRefGoogle Scholar
Bi, L., Zhang, S.Q., Fang, S.M., Tao, Z.T., Peng, R.R., and Liu, W.: A novel anode supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochem. Commun. 10, 1598 (2008).CrossRefGoogle Scholar
Xie, K., Yan, R.Q., and Liu, X.Q.: Stable BaCe0.7Ti0.1Y0.2O3−δ proton conductor for solid oxide fuel cells. J. Alloys Compd. 479, L40 (2009).CrossRefGoogle Scholar
Xie, K., Yan, R.Q., Chen, X.R., Dong, D.H., Wang, S.L., Liu, X.Q., and Meng, G.Y.: A new stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 472, 551 (2009).CrossRefGoogle Scholar
Hibino, T., Hashimoto, A., Suzuki, M., and Sano, M.: A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3 cathode at low temperatures. J. Electrochem. Soc. 149, A1503 (2002).CrossRefGoogle Scholar
Bi, L., Fang, S.M., Tao, Z.T., Zhang, S.Q., Peng, R.R., and Liu, W.: Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3-δelectrolyte membranes based on a solid state reaction. J. Eur. Ceram. Soc. 29, 2567 (2009).CrossRefGoogle Scholar
Babilo, P., Uda, T., and Haile, S.M.: Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 22, 1322 (2007).CrossRefGoogle Scholar
Serra, J.M. and Meulenberg, W.A.: Thin-film proton BaZr0.85Y0.15O3 conducting electrolytes: Toward an intermediate-temperature solid oxide fuel cell alternative. J. Am. Ceram. Soc. 90, 2082 (2007).CrossRefGoogle Scholar
Pergolesi, D., Fabbri, E., D'Epifanio, A., Di Bartolomeo, E., Tebano, A., Sanna, S., Licoccia, S., Balestrino, G., and Traversa, E.: High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Mater. 9, 846 (2010).CrossRefGoogle ScholarPubMed
Yamazaki, Y., Hernandez-Sanchez, R., and Haile, S.M.: High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21, 2755 (2009).CrossRefGoogle Scholar
Imashuku, S., Uda, T., Nose, Y., Taniguchi, G., Ito, Y., and Awakura, Y.: Dependence of dopant cations on microstructure and proton conductivity of barium zirconate. J. Electrochem. Soc. 156, B1 (2009).CrossRefGoogle Scholar
Stokes, S.J. and Islam, M.S.: Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3 . J. Mater. Chem. 20, 6258 (2010).CrossRefGoogle Scholar
Iguchi, F., Yamada, T., Sata, N., Tsurui, T., and Yugami, H.: The influence of grain structures on the electrical conductivity of a BaZr0.95Y0.05O3 proton conductor. Solid State Ionics 177, 2381 (2006).CrossRefGoogle Scholar
Dong, L., Stone, D.S., and Lakes, R.S.: Viscoelastic sigmoid anomalies in BaZrO3-BaTiO3 near phase transformations due to negative stiffness heterogeneity. J. Mater. Res. 26, 1446 (2011).CrossRefGoogle Scholar
Bohn, H.G. and Schober, T.: Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95 . J. Am. Ceram. Soc. 83, 768 (2000).CrossRefGoogle Scholar
Duval, S.B.C., Holtappels, P., Vogt, U.F., Pomjakushina, E., Conder, K., Stimming, U., and Graule, T.: Electrical conductivity of the proton conductor BaZr0.9Y0.1O3−δ obtained by high temperature annealing. Solid State Ionics 178, 1437 (2007).CrossRefGoogle Scholar
Tomita, A., Tsunekawa, K., Hibino, T., Teranishi, S., Tachi, Y., and Sano, M.: Chemical and redox stabilities of a solid oxide fuel cell with BaCe0.8Y0.2O3−δ functioning as an electrolyte and as an anode. Solid State Ionics 177, 2951 (2006).CrossRefGoogle Scholar
Yamazaki, Y., Hernandez-Sanchez, R., and Haile, S.M.: Cation non-stoichiometry in yttrium-doped barium zirconate: Phase behavior, microstructure, and proton conductivity. J. Mater. Chem. 20, 8158 (2010).CrossRefGoogle Scholar
Tolchard, J.R. and Grande, T.: Chemical compatibility of candidate oxide cathodes for BaZrO3 electrolytes. Solid State Ionics 178, 593 (2007).CrossRefGoogle Scholar
Zhang, L., Jiang, S.P., Wang, W., and Zhang, Y.J.: NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. J. Power Sources 170, 55 (2007).CrossRefGoogle Scholar
Bozza, F., Polini, R., and Traversa, E.: Electrophoretic deposition of dense Sr- and Mg-doped LaGaO3 electrolyte films on porous La-doped ceria for intermediate temperature solid oxide fuel cells. Fuel Cells 8, 344 (2008).CrossRefGoogle Scholar
Fehringer, G., Janes, S., Wildersohn, M., and Clasen, R.: Proton-conducting ceramics as electrode/electrolyte - materials for SOFCs: Preparation, mechanical and thermal-mechanical properties of thermal sprayed coatings, material combination and stacks. J. Eur. Ceram. Soc. 24, 705 (2004).CrossRefGoogle Scholar
Asamoto, M., Shirai, H., Yamaura, H., and Yahiro, H.: Fabrication of BaCe0.8Y0.2O3 dense film on perovskite-type oxide electrode substrates. J. Eur. Ceram. Soc. 27, 4229 (2007).CrossRefGoogle Scholar
Kakihana, M.: Sol gel preparation of high temperature superconducting oxides. J. Sol-Gel Sci. Technol. 6, 7 (1996).CrossRefGoogle Scholar
Veith, M., Mathur, S., Lecerf, N., Huch, V., Decker, T., Beck, H.P., Eiser, W., and Haberkorn, R.: Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes. J. Sol-Gel Sci. Technol. 17, 145 (2000).CrossRefGoogle Scholar
Sin, A., El Montaser, B., Odier, P., and Weiss, F.: Synthesis and sintering of large batches of barium zirconate nanopowders. J. Am. Ceram. Soc. 85, 1928 (2002).CrossRefGoogle Scholar
Magrez, A. and Schober, T.: Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3−δ: Comparison between three different synthesis techniques. Solid State Ionics 175, 585 (2004).CrossRefGoogle Scholar
Taglieri, G., Tersigni, M., Villa, P.L., and Mondelli, C.: Synthesis by the citrate route and characterisation of BaZrO3, a high tech ceramic oxide: Preliminary results. Int. J. Inorg. Mater. 1, 103 (1999).CrossRefGoogle Scholar
Rabuffetti, F.A., Lee, J.S., and Brutchey, R.L.: Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Adv. Mater. 24, 1434 (2012).CrossRefGoogle ScholarPubMed
D'Epifanio, A., Fabbri, E., Di Bartolomeo, E., Licoccia, S., and Traversa, E.: Design of BaZr0.8Y0.2O3−δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 8, 69 (2008).CrossRefGoogle Scholar
Fabbri, E., Pergolesi, D., Licoccia, S., and Traversa, E.: Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ionics 181, 1043 (2010).CrossRefGoogle Scholar
Iguchi, F., Tsurui, T., Sata, N., Nagao, Y., and Yugami, H.: The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ionics 180, 563 (2009).CrossRefGoogle Scholar
Deganello, F., Marcì, G., and Deganello, G.: Citrate–nitrate autocombustion synthesis of perovskite-type nanopowders: A systematic approach. J. Eur. Ceram. Soc. 29, 439 (2009).CrossRefGoogle Scholar
Sun, Z.Q., Fabbri, E., Bi, L., and Traversa, E.: Lowering grain boundary resistance of BaZr0.8Y0.2O3−δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Phys. Chem. Chem. Phys. 13, 7692 (2011).CrossRefGoogle Scholar
Deganello, F., Liotta, L.F., Marcì, G., Fabbri, E., and Traversa, E.: Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: Exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mater. Renewable Sustainable Energy 2, 8 (2013).CrossRefGoogle Scholar
Kumar, H.P., Vijayakumar, C., George, C.N., Solomon, S., Jose, R., Thomas, J.K., and Koshy, J.: Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. J. Alloys Compd. 458, 528 (2008).CrossRefGoogle Scholar
Boschini, F., Rulmont, A., Cloots, R., and Vertruyen, B.: Rapid synthesis of submicron crystalline barium zirconate BaZrO3 by precipitation in aqueous basic solution below 100°C. J. Eur. Ceram. Soc. 29, 1457 (2009).CrossRefGoogle Scholar
Cervera, R.B., Oyama, Y., and Yamaguchi, S.: Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol-gel method. Solid State Ionics 178, 569 (2007).CrossRefGoogle Scholar
Stuart, P.A., Unno, T., Ayres-Rocha, R., Djurado, E., and Skinner, S.J.: The synthesis and sintering behaviour of BaZr0.9Y0.1O3−δ powders prepared by spray pyrolysis. J. Eur. Ceram. Soc. 29, 697 (2009).CrossRefGoogle Scholar
Bucko, M.M. and Oblakowski, J.: Preparation of BaZrO3 nanopowders by spray pyrolysis method. J. Eur. Ceram. Soc. 27, 3625 (2007).CrossRefGoogle Scholar
Duval, S.B.C., Holtappels, P., Vogt, U.F., Stimming, U., and Graule, T.: Characterisation of BaZr0.9Y0.1O3−δ prepared by three different synthesis methods: Study of the sinterability and the conductivity. Fuel Cells 9, 613 (2009).CrossRefGoogle Scholar
Robertz, B., Boschini, F., Rulmont, A., Cloots, R., Vandriessche, I., Hoste, S., and Lecomte-Beckers, J.: Preparation of BaZrO3 powders by a spray-drying process. J. Mater. Res. 18, 1325 (2003).CrossRefGoogle Scholar
Babilo, P. and Haile, S.M.: Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88, 2362 (2005).CrossRefGoogle Scholar
Tao, S.W. and Irvine, J.T.S.: A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18, 1581 (2006).CrossRefGoogle Scholar
Tao, S.W. and Irvine, J.T.S.: Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 °C. J. Solid State Chem. 180, 3493 (2007).CrossRefGoogle Scholar
Peng, C., Melnik, J., Luo, J.L., Sanger, A.R., and Chuang, K.T.: BaZr0.8Y0.2O3−δ electrolyte with and without ZnO sintering aid: Preparation and characterization. Solid State Ionics 181, 1372 (2010).CrossRefGoogle Scholar
Tong, J.H., Clark, D., Hoban, M., and O'Hayre, R.: Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics 181, 496 (2010).CrossRefGoogle Scholar
Gao, D.Y. and Guo, R.S.: Structural and electrochemical properties of yttrium-doped barium zirconate by addition of CuO. J. Alloys Compd. 493, 288 (2010).CrossRefGoogle Scholar
Tong, J.H., Clark, D., Bernau, L., Sanders, M., and O'Hayre, R.: Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J. Mater. Chem. 20, 6333 (2010).CrossRefGoogle Scholar
Duval, S.B.C., Holtappels, P., Stimming, U., and Graule, T.: Effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3−δ . Solid State Ionics 179, 1112 (2008).CrossRefGoogle Scholar
Tsai, C.L., Kopczyk, M., Smith, R.J., and Schmidt, V.H.: Low temperature sintering of BaZr0.8-xCexY0.2O3−δ using lithium fluoride additive. Solid State Ionics 181, 1083 (2010).CrossRefGoogle Scholar
Sun, Z.Q., Fabbri, E., Bi, L., and Traversa, E.: Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped barium zirconate with calcium addition. J. Am. Ceram. Soc. 95, 627 (2012).CrossRefGoogle Scholar
Ito, N., Matsumoto, H., Kawasaki, Y., Okada, S., and Ishihara, T.: Introduction of In or Ga as second dopant to BaZr0.9Y0.1O3−δ to achieve better sinterability. Solid State Ionics 179, 324 (2008).CrossRefGoogle Scholar
Bi, L., Fabbri, E., Sun, Z.Q., and Traversa, E.: Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3−δ for solid oxide fuel cells (SOFCs). Solid State Ionics 196, 59 (2011).CrossRefGoogle Scholar
Bi, L., Fabbri, E., Sun, Z.Q., and Traversa, E.: A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxide fuel cells (SOFCs) with proton-conducting Y-doped BaZrO3 films. Energy Environ. Sci. 4, 409 (2011).CrossRefGoogle Scholar
Fabbri, E., Bi, L., Tanaka, H., Pergolesi, D., and Traversa, E.: Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv. Funct. Mater. 21, 158 (2011).CrossRefGoogle Scholar
Fabbri, E., Pergolesi, D., and Traversa, E.: Electrode materials: A challenge for the exploitation of protonic solid oxide fuel cells. Sci. Technol. Adv. Mater. 11, 044301 (2010).CrossRefGoogle ScholarPubMed
Fabbri, E., Oh, T.K., Licoccia, S., Traversa, E., and Wachsman, E.D.: Mixed protonic/electronic conductor cathodes for intermediate temperature SOFCs based on proton conducting electrolytes. J. Electrochem. Soc. 156, B38 (2009).CrossRefGoogle Scholar
Magrasò, A., Frontera, C., Gunnaes, A.E., Tarancon, A., Marrero-Lopez, D., Norby, T., and Haugsrud, R.: Structure, chemical stability and mixed proton-electron conductivity in BaZr0.9−xPrxGd0.1O3−δ . J. Power Sources 196, 9141 (2011).CrossRefGoogle Scholar
Magrasò, A., Kjolseth, C., Haugsrud, R., and Norby, T.: Influence of Pr substitution on defects, transport, and grain boundary properties of acceptor-doped BaZrO3 . Int. J. Hydrogen Energy 37, 7962 (2012).CrossRefGoogle Scholar
Fabbri, E., Markus, I., Bi, L., Pergolesi, D., and Traversa, E.: Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ionics 202, 30 (2011).CrossRefGoogle Scholar
Fabbri, E., Bi, L., Pergolesi, D., and Traversa, E.: High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy Environ. Sci. 4, 4984 (2011).CrossRefGoogle Scholar
Vert, V.B., Solis, C., and Serra, J.M.: Electrochemical properties of PSFC-BCYb composites as cathodes for proton conducting solid oxide fuel cells. Fuel Cells 11, 81 (2011).CrossRefGoogle Scholar
Zhao, F., Wang, S.W., Brinkman, K., and Chen, F.L.: Layered peroyskite PrBa0.5Sr0.5Co2O5+x as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. J. Power Sources 195, 5468 (2010).CrossRefGoogle Scholar
Chevallier, L., Zunic, M., Esposito, V., Di Bartolomeo, E., and Traversa, E.: A wet-chemical route for the preparation of Ni-BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs. Solid State Ionics 180, 715 (2009).CrossRefGoogle Scholar
Zunic, M., Chevallier, L., Di Bartolomeo, E., D'Epifanio, A., Licoccia, S., and Traversa, E.: Anode supported protonic solid oxide fuel cells fabricated using electrophoretic deposition. Fuel Cells 11, 165 (2011).CrossRefGoogle Scholar
Bi, L., Fabbri, E., and Traversa, E.: Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem. Commun. 16, 37 (2012).CrossRefGoogle Scholar
Bi, L., Fabbri, E., Sun, Z.Q., and Traversa, E.: BaZr0.8Y0.2O3−δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method. J. Electrochem. Soc. 158, B797 (2011).CrossRefGoogle Scholar
Peng, C., Melnik, J., Li, J.X., Luo, J.L., Sanger, A.R., and Chuang, K.T.: ZnO-doped BaZr0.85Y0.15O3-δ proton-conducting electrolytes: Characterization and fabrication of thin films. J. Power Sources 190, 447 (2009).CrossRefGoogle Scholar
Guo, Y.M., Lin, Y., Ran, R., and Shao, Z.P.: Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications. J. Power Sources 193, 400 (2009).CrossRefGoogle Scholar
Sun, W.P., Yan, L.T., Shi, Z., Zhu, Z.W., and Liu, W.: Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3−δ electrolyte membrane. J. Power Sources 195, 4727 (2010).CrossRefGoogle Scholar
Pergolesi, D., Fabbri, E., and Traversa, E.: Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem. Commun. 12, 977 (2010).CrossRefGoogle Scholar
Bi, L., Fabbri, E., Sun, Z.Q., and Traversa, E.: Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3−δ electrolyte films for anode-supported solid oxide fuel cells. Energy Environ. Sci. 4, 1352 (2011).CrossRefGoogle Scholar
Fabbri, E., Bi, L., Rupp, J.L.M., Pergolesi, D., and Traversa, E.: Electrode tailoring improves the intermediate temperature performance of solid oxide fuel cells based on a Y and Pr co-doped barium zirconate proton conducting electrolyte. RSC Adv. 1, 1183 (2011).CrossRefGoogle Scholar
Luisetto, I., Licoccia, S., D’Epifanio, A., Sanson, A., Mercadelli, E., and Di Bartolomeo, E.: Electrochemical performance of spin coated dense BaZr0.8Y0.16Zn0.04O3−δ membrane. J. Power Sources 220, 280 (2012).CrossRefGoogle Scholar
Fabbri, E., D'Epifanio, A., Sanna, S., Di Bartolomeo, E., Balestrino, G., Licoccia, S., and Traversa, E.: A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte. Energy Environ. Sci. 3, 618 (2010).CrossRefGoogle Scholar
Tao, Z.T., Bi, L., Yan, L.T., Sun, W.P., Zhu, Z.W., Peng, R.R., and Liu, W.: A novel single phase cathode material for a proton-conducting SOFC. Electrochem. Commun. 11, 688 (2009).CrossRefGoogle Scholar