Skip to main content Accessibility help

Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia

  • Koichiro Hayashi (a1), Toshifumi Shimizu (a2), Hidefumi Asano (a2), Wataru Sakamoto (a1) and Toshinobu Yogo (a1)...


Size-controlled spinel iron oxide (SIO) nanoparticle/organic hybrid was synthesized in situ from iron (III) allylacetylacetonate (IAA) at around 80 °C. The formation of SIO particles chemically bound with organics was confirmed by infrared and x-ray photoelectron spectroscopy. The sizes of SIO nanoparticles in the hybrids were monodispersed and ranged from 7 to 23 nm under controlled hydrolysis conditions. The hybrid including SIO particles of 7.3 nm was superparamagnetic, whereas those dispersed with particles above 11 nm were ferrimagnetic. The specific absorption rate (SAR) value was dependent upon the magnetic properties of the hybrid at 100 Oe. The SAR was 15.2 W g−1 in a 230 kHz alternating magnetic field and 100 Oe when the crystallite size of SIO particle in the hybrid was 16 nm. The temperatures of agars dispersed with hybrid powders of 5 and 8 mg ml−1 reached the optimum temperature (42 °C) for 17 and 8 min, respectively. The increase in temperature was controlled in terms of the strength of magnetic field. The simulation of heat transfer in the agar phantom model revealed that the suitable temperature distribution for therapy was attained from 15 to 20 min at 230 kHz and 100 Oe.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1Yoon, T.J., Kim, J.S., Kim, B.G., Yu, K.N., Cho, M.H., Lee, J.K.: Multifunctional nanoparticles processing a “magnetic motor effect” for drug or gene delivery. Angew. Chem. Int. Ed. 44, 1068 2005
2Frank, J.A., Miller, B.R., Arbab, A.S., Zywicke, H.A., Jordan, E.K., Lewis, B.K., Bryant, L.H., Bulte, J.W.M.: Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxide and transfection agents. Radiology 228, 480 2003
3Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161 2004
4Gerweck, L.E.: Modification of cell lethality at elevated temperatures the pH effect. Radiat. Res. 70, 224 1977
5Cavaliere, R., Ciocatto, E.C., Ciovanella, B.C., Heidelberger, C., Johnson, R.O., Marcottini, M., Mondovi, B., Moricca, G., Rossi-Fanelli, A.: Selective heat sensitivity of cancer cells—Biomedical and clinical studies. Cancer 20, 1351 1967
6Fortin, J.P., Wilhelm, C., Servais, J., Ménager, C., Bacri, J.C., Gazeau, F.: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628 2007
7Han, D.H., Wang, J.P., Luo, H.L.: Crystallite size effect on saturation magnetization of fine ferrite ferrimagnetic particles. J. Magn. Magn. Mater. 136, 176 1994
8Chikazumi, S.: Physics of Ferromagnetism 2nd ed.Oxford Univ. Press Oxford, UK 1997 204
9Kim, D.K., Mikhaylova, M., Zhang, Y., Muhammed, M.: Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 15, 1617 2003
10Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204 2002
11Cabañas, A., Poliakoff, M.: The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408 2001
12Hayashimoto, Y., Sakamoto, W., Yogo, T.: Synthesis of nickel zinc ferrite nanoparticle/organic hybrid from metalorganics. J. Mater. Res. 22, 1967 2007
13Hayashi, K., Sakamoto, W., Yogo, T.: In situ synthesis of lithium ferrite nanoparticle/polymer hybrid. J. Mater. Res. 22, 974 2007
14Nakamura, S., Sakamoto, W., Yogo, T.: In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid. J. Mater. Res. 21, 1336 2006
15Nakamura, S., Sakamoto, W., Yogo, T.: In situ synthesis of nickel ferrite nanoparticle/organic hybrid. J. Mater. Res. 20, 1590 2005
16Yogo, T., Nakamura, T., Sakamoto, W., Hirano, S.: Synthesis of magnetic particle/organic hybrid from metalorganic compounds. J. Mater. Res. 14, 2855 1999
17Tayim, H.A., Sabri, M.: Synthesis of some olefin-substituted metal acetylacetonates. Inorg. Nucl. Chem. Lett. 9, 753 1973
18Cullity, B.D.: Elements of X-ray Diffraction 2nd ed.Addison-Wesley Reading, MA 1978 284
19Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 2002
20Ishii, M., Nakahira, M., Yamanaka, T.: Infrared absorption and cation distributions in (Mn, Fe)3O4. Solid State Commun. 11, 209 1972
21JCPDS No. 1906 29 International Center for Diffraction Data Newton Square, PA 1967
22Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., Li, M.: Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. Part A 80, 333 2007
23Mills, P., Sullivan, J.L.: A study of the core level electrons in iron and its three oxides by means of x-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 16, 723 1983
24Fujii, T., de Groot, F.M.F., Sawatzky, G.A., Voogt, F.C., Hibma, T., Okada, K.: In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195 1999
25McIntyre, N.S., Zetaruk, D.G.: X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521 1977
26Verwey, E.J.W., Haayman, P.W., Romeijn, F.C.: Physical properties and cation arrangement of oxide with spinel structures. J. Chem. Phys. 15, 181 1947
27Yang, J.B., Zhou, X.D., Yelon, W.B., James, W.J., Cai, Q., Gopalakrishnan, K.V., Malik, S.K., Sun, X.C., Nikles, D.E.: Magnetic and structural studies of the Verwey transition in Fe3−δO4 nanoparticles. J. Appl. Phys. 95, 7540 2004
28Morrish, A.H.: The Physical Principles of Magnetism John Wiley & Sons New York 1965 360
29Drake, P., Cho, H.J., Shih, P.S., Kao, C.H., Lee, K.F., Kuo, C.H., Lin, X.Z., Lin, Y.J.: Gd-doped iron-oxide nanoparticles for tumor therapy via magnetic field hyperthermia. J. Mater. Chem. 17, 4914 2007
30Brusentsov, N.A., Gogosov, V.V., Brusentsova, T.N., Sergeev, A.V., Jurchenko, N.Y., Kuznetsov, A.A., Kuznetsov, O.A., Shumakov, L.I.: Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J. Magn. Magn. Mater. 225, 113 2001
31Hergt, R., Andrä, W., d’Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., Schmidt, H.G.: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745 1998
32Wang, X., Gu, H., Yang, Z.: The heating effect of magnetic fluids in an alternating magnetic field. J. Magn. Magn. Mater. 293, 334 2005


Related content

Powered by UNSILO

Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia

  • Koichiro Hayashi (a1), Toshifumi Shimizu (a2), Hidefumi Asano (a2), Wataru Sakamoto (a1) and Toshinobu Yogo (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.