Skip to main content Accessibility help
×
Home

Synthesis of polystyrene-grafted carbon nanocapsules

  • Hsuan-Ming Huang (a1), Hung-Chieh Tsai (a1), I-Chun Liu (a1) and Raymond Chien-Chao Tsiang (a1)

Abstract

A novel polymeric composite material, polystyrene (PS)-grafted carbon nanocapsules (CNCs), has been prepared. sec-butyllithium was first used to introduce negative charges on CNCs, and these CNC carbanions acted then as initiators for anionic polymerization of styrene. Based on a weight loss at the decomposition temperature of the butyl groups, the quantity of the butyls attached to the CNC surface was determined as 1.18 wt%, corresponding to 0.25 mol% initiator per mol of carbon atom on the CNC surface. Furthermore, the decomposition temperature of butylated CNCs was lower than that of the pristine CNCs by nearly 200 °C. The polystyrene content in our PS-grafted CNC sample was approximately 20%, and the molecular weight of the grafted PS on the surface of CNCs was calculated as 1200 gmol−1. Compared with the molecular weight of the ungrafted PS, the molecular weight of grafted PS was lower, thus indicating rates of initiation and/or propagation for CNC-bound carbanions lower than those of the free sec-butyllithium. The PS-grafted CNCs had good dispersion in toluene, tetrahydrofuran, cyclohexane, and other common organic solvents in which polystyrene was dissolvable and thus indicated good compatibility when further blended with other styrenic polymers. The PS-grafted CNCs were characterized and examined by Fourier transform infrared, thermogravimetric analysis, atomic force microscopy, differential scanning calorimetry, ultraviolet-visible spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electron microscopy images indicated that the PS-grafted CNCs were homogeneous composites containing uniform polymer/CNC ratios.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: chmcct@ccu.edu.tw

References

Hide All
1Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
2Ugarte, D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707 (1992).
3Yasuda, A., Kawase, N., Banhart, F., Mizutani, W., Shimizu, T., and Tokumoto, H.: Formation mechanism of carbon-nanocapsules and -nanoparticles based on the in-situ observation. J. Phys. Chem. B 106, 1247 (2002).
4Abe, H., Yamamoto, S., and Miyashita, A.: Formation mechanisms for carbon onions and nanocapsules in C+-ion implanted copper. J. Appl. Phys. 90, 3353 (2001).
5Saito, Y. and Matsumoto, T.: Hollow and filled rectangular parallelopiped carbon nanocapsules catalyzed by calcium and strontium. J. Cryst. Growth 187, 402 (1998).
6Oku, T., Kuno, M., Kitahara, H., and Narita, I.: Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int. J. Inorg. Mater. 3, 597 (2001).
7Subramoney, S., Ruoff, R.S., Lorents, D.C., Chan, B., Malhotra, R., Dyer, M.J., and Parvin, K.: Magnetic separation of GdC2 encapsulated in carbon nanoparticles. Carbon 32, 507 (1994).
8Diggs, B., Zhou, A., Silva, C., Kirkpatrick, S., Nuhfer, N.T., McHenry, M.E., Petasis, D., Majetich, S.A., Brunett, B., Artman, J.O., and Staley, S.W.: Magnetic properties of carbon-coated rare-earth carbide nanocrystallites produced by a carbon arc method. J. Appl. Phys. 75, 5879 (1994).
9Tomita, S., Hikita, M., Fujii, M., Hayashi, S., Akamatsu, K., Deki, S., and Yasuda, H.: Formation of Co filled carbon nanocapsules by metal-template graphitization of diamond nanoparticles. J. Appl. Phys. 88, 5452 (2000).
10Oku, T., Kusunose, T., Hirata, T., Hatakeyama, R., Sato, N., Niihara, K., and Suganuma, K.: Formation and structure of Ag, Ge, and SiC nanoparticles encapsulated in boron nitride and carbon nanocapsules. Diamond Relat. Mater. 9, 911 (2000).
11Kopelev, N.S., Chechersky, V., Nath, A., Wang, Z.L., Kuzmann, E., Zhang, B., and Via, G.H.: Encapsulation of iron carbide in carbon nanocapsules. Chem. Mater. 7, 1419 (1995).
12Saito, Y., Okuda, M., Yoshikawa, T., Kasuya, A., and Nishina, Y.: Correlation between volatility of rare-earth metals and encapsulation of their carbides in carbon nanocapsules. J. Phys. Chem. 98, 6696 (1994).
13Saito, Y., Nishikubo, K., Kawabata, K., and Matsumoto, T.: Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J. Appl. Phys. 80, 3062 (1996).
14Sano, N., Akazawa, H., Kikuchi, T., and Kanki, T.: Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41, 2159 (2003).
15Si, P.Z., Zhang, Z.D., Geng, D.Y., You, C.Y., Zhao, X.G., and Zhang, W.S.: Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor. Carbon 41, 247 (2003).
16Kasuya, A., Iwasaki, H., Saito, Y., Okuda, M., Suezawa, M., Sumiyama, K., Suzuki, K., and Nishina, Y.: Magnetic measurements on YC2 encapsulated in graphitic polyhedral particles. Surf. Rev. Lett. 3, 853 (1996).
17Funasaka, H., Sugiyama, K., Yamanoto, K., and Takahashi, T.: Synthesis of actinide carbides encapsulated within carbon nanoparticles. J. Appl. Phys. 78, 5320 (1995).
18Huang, G.L.: Organically functionalized carbon nanocapsule. U.S. Patent No. 20040126303A1 (2004).
19Lin, Y., Rao, A.M., Sadanadan, B., Kenik, E.A., and Sun, Y.P.: Functionalizing multiple-walled carbon nanotubes with aminopolymers. J. Phys. Chem. B 106, 1294 (2002).
20Hill, D.E., Lin, Y., Rao, A.M., Allard, L.F., and Sun, Y.P.: Functionalization of carbon nanotubes with polystyrene. Macromolecules 35, 9466 (2002).
21Fu, K., Li, H., Zhou, B., Kitaygorodskiy, A., Allard, L.F., and Sun, Y.P.: Deuterium attachment to carbon nanotubes in deuterated water. J. Am. Chem. Soc. 126, 4669 (2004).
22Lin, Y., Allard, L.F., and Sun, Y.P.: Protein-affinity of single-walled carbon nanotubes in water. J. Phys. Chem. B 108, 3760 (2004).
23Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., and Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95 (1998).
24Samulski, E.T., DeSimone, J.M., Hunt, M.O., Menceloglu, Y.Z. Jr., Jarnagin, R.C., York, G.A., Labat, K.B., and Wang, H.: Flagellenes: Nanophase-separated, polymer-substituted fullerenes. Chem. Mater. 4, 1153 (1992).
25Ederlé, Y. and Mathis, C.: Grafting of anionic polymers onto C60 in polar and nonpolar solvents. Macromolecules 30, 2546 (1997).
26Ederlé, Y. and Mathis, C.: Carbanions on grafted C60 as initiators for anionic polymerization. Macromolecules 30, 4262 (1997).
27Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y., and Ajayan, P.M.: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).
28Kong, H., Gao, C., and Yan, D.: Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412 (2004).
29Kong, H., Gao, C., and Yan, D.: Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 37, 4022 (2004).
30Baskaran, D., Mays, J.W., and Bratcher, M.S.: Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew. Chem., Int. Ed. Engl. 43, 2138 (2004).
31Huang, G.L.: Preparation of hollow carbon nanocapsules. U.S. Patent No. 20030159917A1 (2003).
32Georgakilas, V., Guldi, D.M., Signorini, R., Bozio, R., and Prato, M.: Organic functionalization and optical properties of carbon onions. J. Am. Chem. Soc. 125, 14268 (2003).
33Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., and Hirsch, A.: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760 (2002).
34Haddon, R.C.: Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science 261, 1545 (1993).
35Koshio, A., Yudasaka, M., Zhang, M., and Lijima, S.: A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett. 1, 361 (2001).
36Liu, L., Qin, Y., Guo, Z.X., and Zhu, D.: Reduction of solubilized multi-walled carbon nanotubes. Carbon 41, 331 (2003).
37Blake, R., Gun’ko, Y.K., Coleman, J., Cadek, M., Fonseca, A., Nagy, J.B., and Blau, W.J.: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc. 126, 10226 (2004).
38Liu, I.C., Huang, H.M., Chang, C.Y., Tsai, H.C., Hsu, C.H., and Tsiang, R.C.C.: Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: Anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37, 283 (2004).
39Chieu, T.C., Dresselhaus, M.S., and Endo, M.: Raman studies of benzene-derived graphite fibers. Phys. Rev. B 26, 5867 (1982).
40Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
41Rigolio, M., Castiglioni, C., Zerbi, G., and Negri, F.: Density-functional theory prediction of the vibrational spectra of polycyclic aromatic hydrocarbons: Effect of molecular symmetry and size on Raman intensities. J. Mol. Struct. 563–564, 79 (2001).
42Wu, W., Zhang, S., Li, Y., Li, J., Liu, L., Qin, Y., Guo, Z.X., Dai, L., Ye, C., and Zhu, D.: PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromolecules 36, 6286 (2003).
43Liang, F., Sadana, A.K., Peera, A., Chattopadhyay, J., Gu, Z., Hauge, R.H., and Billups, W.E.: Convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257 (2004).
44Hsieh, H.L.: Kinetics of polymerization of butadiene, isoprene, and styrene with alkyllithiums. Part II. Rate of initiation. J. Polym. Sci., Part A 3, 163 (1965).
45Dyke, C.A. and Tour, J.M.: Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151 (2004).
46Hamon, M.A., Chen, J., Hu, H., Chen, Y.S., Itkis, M.E., Rao, A.M., Eklund, P.C., and Haddon, R.C.: Dissolution of single-walled carbon nanotubes. Adv. Mater. 11, 834 (1999).
47Li, X., Zhang, J., Li, Q., Li, H., and Liu, Z.: Polymerization of short single-walled carbon nanotubes into large strands. Carbon 41, 598 (2003).
48Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Filho, A.G. Souza, Pimenta, M.A., and Saito, R.: Single nanotube raman spectroscopy. Acc. Chem. Res. 35, 1070 (2002).
49Liu, Y., Yao, Z., and Adronov, A.: Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules 38, 1172 (2005).
50Qin, S., Qin, D., Ford, W.T., Resasco, D.E., and Herrera, J.E.: Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc. 126, 170 (2004).

Keywords

Synthesis of polystyrene-grafted carbon nanocapsules

  • Hsuan-Ming Huang (a1), Hung-Chieh Tsai (a1), I-Chun Liu (a1) and Raymond Chien-Chao Tsiang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed