Skip to main content Accessibility help
×
Home

Synthesis of highly porous alumina-based oxides with tailored catalytic properties in the esterification of glycerol

  • Jose Vitor Costa do Carmo (a1), Alcineia C. Oliveira (a1), Jesuina C.S. Araújo (a2), Adriana Campos (a3) and Gian Carlos Silva Duarte (a3)...

Abstract

Highly porous alumina-based oxides, γ-Al2O3, SiO2–Al2O3, and TiO2–Al2O3 were synthesized by a modified sol–gel method. Polivinylpyrrolidone was used as the pore expanding agent, whereas cetyltrimethylammonium bromide was used as the template in the presence of alkoxide inorganic precursors. Both as-synthesized and calcined solids were used as catalysts for esterification of glycerol with acetic acid (EG). The XRD and SEM-EDS measurements demonstrated that the Si-containing solids are amorphous while those containing Ti are semicrystalline with the latter composed of TiO2 rutile, TiO2 anatase, and γ-Al2O3 phases. All solids possessed ordered porous structures comprising of micro- and mesoporosity, with interconnectivity between these pores of different length scales. The high acidity of γ-Al2O3 and TiO2–Al2O3 materials resulted in good catalytic performances in the EG. Porosity of the solids plays a secondary role in determining the catalytic activity. Under the same conditions, the as-synthesized solids exhibited slightly lower catalytic performances compared to that of the calcined ones.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: alcineia@ufc.br

References

Hide All
1.Cai, W., Yu, J., Anand, C., Vinu, A., and Jaroniec, M.: Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties. Chem. Mater. 23, 1147 (2011).
2.Toledo, J.A., Bokhimi, X., Lopez, C., Angeles, C., Hernandez, F., and Fripi, J.J.: Synthesis of highly porous aluminas mediated by cationic surfactant: Structural and textural properties. J. Mater. Res. 166, 182 (2002).
3.Ferreira Alves, N., Neto, A.B.S., Bessa, B.S., Oliveira, A.C., Filho, J.M., Campos, A.F., and Oliveira, A.C.: Binary oxides with defined hierarchy of pores in the esterification of glycerol. Catalysts 6, 151 (2016).
4.Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Grimes, C.A., and Dickeya, E.C.: Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance. J. Mater. Res. 17, 1163 (2002).
5.Li, Z-X. and Li, M-M.: Highly ordered hierarchical macroporous-mesoporous aluminawith crystalline walls. Catal. Lett. 146, 1712 (2016).
6.Gniewek, A., Ziółkowski, J.J., Trzeciak, A.M., Zawadzki, M., Grabowska, H., and Wrzyszcz, J.: Palladium nanoparticles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki–Miyaura reaction. J. Catal. 254, 121 (2008).
7.Ahrem, L., Wolf, J., Scholz, G., and Kemnitz, E.: A novel fluoride-doped aluminium oxide catalyst with tunable Brønsted and Lewis acidity. Catal. Sci. Technol. 8, 1404 (2018).
8.Trueba, M. and Trasatti, S.P.: γ‐Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem., 3393 (2005).
9.Svetlan, N.M., Egorova, R., Mukhamed’yarova, A.N., and Lamberov, A.A.: Hydrothermal modification of the alumina catalyst for the skeletal isomerization of n-butenes. Appl. Catal., A 554, 64 (2018).
10.Carvalho, D.C., Souza, H.S.A., Filho, J.M., Assaf, E.M., Thyssen, V.V., Campos, A., Hernandez, E.P., Raudel, R., and Oliveira, A.C.: Nanosized Pt-containing Al2O3 as an efficient catalyst to avoid coking and sintering in steam reforming of glycerol. RSC Adv. 4, 61771 (2014).
11.Costa, D., Decolatti, H.P., Legnoverd, M.S., and Querini, C.A.: Influence of acidic properties of different solid acid catalysts forglycerol acetylation. Catal. Today 289, 222 (2017).
12.Feng, Y., Wang, K., Yao, J., Webley, P.A., Smart, S., and Wang, H.: Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. Ceram. Int. 39, 7551 (2013).
13.Dressler, M., Nofz, M., Pauli, J., and Jager, C.: Influence of polyvinylpyrrolidone (PVP) on alumina sols prepared by a modified Yoldas procedure. J. Sol–Gel Sci. Technol. 47, 260 (2008).
14.Jing, C. and Hou, J.: Sol–gel‐derived alumina/polyvinylpyrrolidone hybrid nanocomposite film on metal for corrosion resistance. J. Appl. Polym. Sci. 105, 697 (2007).
15.Araujo, J.C.S., Zanchet, D., Rinaldi, R., Schuchardt, U., Hori, C.E., Fierro, J.L.G., and Bueno, J.M.C.: The effects of La2O3 on the structural properties of La2O3–Al2O3 prepared by the sol–gel method and on the catalytic performance of Pt/La2O3–Al2O3 towards steam reforming and partial oxidation of methane. Appl. Catal., B 84, 552 (2008).
16.de Carvalho, D.C., Oliveira, A.C., Ferreira, O.P., Filho, J.M., Tehuacanero-Cuapa, S., and Oliveira, A.C.: Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance. Chem. Eng. J. 313, 1454 (2017).
17.Halder, S., Prasad, T., Khan, N.I., Goyat, M.S., and Chauhan, S.R.: Superior mechanical properties of poly vinyl alcohol-assisted ZnO nanoparticle reinforced epoxy composites. Mater. Chem. Phys. 192, 198 (2017).
18.Namkhang, P. and Kongkachuichay, P.: Synthesis of copper-based nanostructured catalysts on SiO2–Al2O3, SiO2–TiO2, and SiO2–ZrO2 supports for NO Reduction. J. Nanosci. Nanotechnol. 15, 5410 (2015).
19.Yanagishita, T., Imaizumi, M., Kondo, T., and Masuda, H.: Preparation of nanoporous alumina hollow spheres with a highly ordered hole arrangement. RSC Adv. 8, 2041 (2018).
20.Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603 (1985).
21.Krishna, K.S., Malty, S., and Datta, K.K.: Carbon spheres assisted synthesis of porous oxides with foam-like architecture. J. Nanosci. Nanotechnol. 13, 3121 (2013).
22.Seo, K., Sinha, K., Novitskaya, E., and Graeve, O.A.: Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. , 215, 203 (2018).
23.Shek, C.H., Lai, J.K.L., Gu, T.S., and Lin, G.M.: Transformation evolution and infrared absorption spectra of amorphous and crystalline nano Al2O3 powders. Nanostruct. Mater. 8, 605 (1997).
24.Huang, M-Y., Han, X-X., Hung, C-T., Lin, J-C., Wu, P-H., Wu, J-C., and Liu, S-B.: Heteropolyacid-based ionic liquids as efficient homogeneous catalysts for acetylation of glycerol. J. Catal. 320, 42 (2014).
25.Kim, I., Kim, J., and Lee, D.: A comparative study on catalytic properties of solid acid catalysts for glycerol acetylation at low temperatures. Appl. Catal., B 148, 295 (2014).
26.Hua, W., Zhang, Y., Huang, Y., Wang, J., Gao, J., and Xu, J.: Selective esterification of glycerol with acetic acid to diacetin using antimony pentoxide as reusable catalyst. J. Energy Chem. 24, 22 (2015).
27.Betiha, M.A., Hassan, H., El-Sharkaw, E.A., Al-Sabagha, A.M., Menoufya, M.F., and Abdelmoniemb, H-E.M.: A new approach to polymer-supported phosphotungstic acid: Application for glycerol acetylation using robust sustainable acidicheterogeneous–homogenous catalyst. Appl. Catal., B 15, 182 (2016).
28.Silva, M.J., Liberto, N.A., Leles, L.C.A., and Pereira, U.: Fe4(SiW12O40)3-catalyzed glycerol acetylation: Synthesis ofbioadditives by using highly active Lewis acid catalyst. J. Mol.Catal. B: Environ. 69, 422 (2016).
29.Serafim, H., Fonseca, I.M., Ramos, A.M., and Castanheiro, J.E.: Valorization of glycerol into fuel additives over zeolites as catalysts. Chem. Eng. J. 178, 291 (2011).
30.Tangestanifard, M. and Ghaziaskar, H.S.: Arenesulfonic acid-functionalized bentonite as catalyst in glycerol esterification with acetic acid. Catalysts 7, 211 (2017).
31.Kim, I., Kim, J., and Lee, D.: A comparative study on catalytic properties of solid acid catalysts for glycerol acetylation at low temperatures. Appl. Catal., B 148–149, 295 (2014).
32.Betiha, M.A., Hassan, H.M.A., El-Sharkawy, E.A., Al-Sabagh, A.M., Menoufy, M.F., and Abdelmoniem, H-E.M.: A new approach to polymer-supported phosphotungstic acid: Application for glycerol acetylation using robust sustainable acidic heterogeneous–homogenous catalyst. Appl. Catal., B 182, 15 (2017).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed