Skip to main content Accessibility help

Synthesis of DNA-encapsulated silica elaborated by sol–gel routes

  • Derya Kapusuz (a1) and Caner Durucan (a1)


The highly specific functions of DNA can be used for designing novel functional materials. However, aqueous solubility and biochemical instability of DNA impede its direct utilization as a functional component. Herein, preparation of a hybrid material encapsulating the DNA molecules (double-stranded salmon sperm, 50–5000 base pairs) in robust host—sol–gel-derived silica—has been described. The encapsulation was carried out in two steps: hydrolysis of an acidic tetraethylorthosilicate [Si(OC2H5)4] sol and was followed by condensation near physiological pH upon addition of alkaline DNA-containing solutions. The gelation behavior and structural properties of the DNA–silica hybrids were investigated by 29Si nuclear magnetic resonance and by nitrogen adsorption. The selective adsorption of a DNA-interactive reagent molecule (ethidium bromide) in their diluted aqueous solutions on DNA–silica hybrids confirmed that the DNA molecules remained entrapped within the silica host without any deterioration. A DNA encapsulation mechanism correlating the silica microstructure and DNA holding efficiency has been proposed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Braun, S., Rappoport, S., Zusman, R., Avnir, D., and Ottolenghi, M.: Biochemically active sol–gel glasses: The trapping of enzymes. Mater. Lett. 10, 15 (1990).
2.Avnir, D., Braun, S., Lev, O., and Ottolenghi, M.: Enzymes and other proteins entrapped in sol–gel materials. Chem. Mater. 6, 16051614 (1994).
3.Gill, I. and Ballesteros, A.: Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: An efficient and generic approach. J. Am. Chem. Soc. 120, 85878598 (1998).
4.Gill, I. and Ballesteros, A.: Bioencapsulation within synthetic polymers (Part 1): Sol–gel encapsulated biologicals. Trends Biotechnol. 18, 282296 (2000).
5.Carturan, G., Campostrini, R., Dire, S., Scardi, V., and Dealteriis, E.: Inorganic gels for immobilization of biocatalysts—inclusion of invertase-active whole cell of yeast (saccharomyces-cerevisiae) into thin-layers of gel deposited on glass sheets. J. Mol. Catal. 57, L13L16 (1989).
6.Pope, E.J.A.: Gel encapsulated microorganisms–saccharomyces-cerevisiae-silica–gel biocomposites. J. Sol-Gel Sci. Technol. 4, 225229 (1995).
7.Dave, B.C., Dunn, B., Valentine, J.S., and Zink, J.I.: Sol–gel encapsulation methods for biosensors. Anal. Chem. 66, A1120A1127 (1994).
8.Brennan, J.D.: Using intrinsic fluorescence to investigate proteins entrapped in sol–gel derived materials. Appl. Spectrosc. 53, 106A121A (1999).
9.Lin, J. and Brown, C.W.: Sol–gel glass as a matrix for chemical and biochemical sensing. TrAC, Trends Anal. Chem. 16, 200211 (1997).
10.Mann, S., Burkett, S.L., Davis, S.A., Fowler, C.E., Mendelson, N.H., Sims, S.D., Walsh, D., and Whilton, N.T.: Sol–gel synthesis of organized matter. Chem. Mater. 9, 23002310 (1997).
11.Estroff, L.A. and Hamilton, A.D.: At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chem. Mater. 13, 32273235 (2001).
12.Weiner, S. and Addadi, L.: Design strategies in mineralized biological materials. J. Mater. Chem. 5, 689702 (1997).
13.Böttcher, H., Slowik, P., and Suss, W.: Sol–gel carrier systems for controlled drug delivery. J. Sol-Gel Sci. Technol. 13, 277281 (1998).
14.Avnir, D., Coradin, T., Lev, O., and Livage, J.: Recent bio-applications of sol-gel materials. J. Mater. Chem. 16, 10131030 (2006).
15.Ledley, F.D.: Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13, 15951614 (1996).
16.Flotte, T.R. and Carter, B.J.: Adeno-associated virus vectors for gene therapy of cystic fibrosis. Methods Enzymol. 292, 717732 (1998).
17.Mah, C., Byrne, B.J., and Flotte, T.R.: Virus-based gene delivery systems. Clin. Pharmacokinet. 41, 901911 (2002).
18.Schatzlein, A.G.: Non-viral vectors in cancer gene therapy: Principles and progress. Anti-Cancer Drug 12, 275304 (2001).
19.Rettig, G.R. and Rice, K.G.: Non-viral gene delivery: From the needle to the nucleus. Expert Opin. Biol. Ther. 7, 799808 (2007).
20.Hosseinkhani, H., Aoyama, T., Ogawa, O., and Tabata, Y.: Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. Curr. Pharm. Biotechnol. 4, 109122 (2003).
21.Fidanza, J., Glazer, M., Mutnick, D., McGall, G., and Frank, C.: High capacity substrates as a platform for a DNA probe array genotyping assay. Nucleosides Nucleotides Nucleic Acids 20, 533538 (2001).
22.Glazer, M., Fidanza, J., McGall, G., and Frank, C.: Colloidal silica films for high-capacity DNA probe arrays. Chem. Mater. 13, 47734782 (2001).
23.Rupcich, N., Goldstein, A., and Brennan, J.D.: Optimization of sol-gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem. Mater. 15, 18031811 (2003).
24.Breadmore, M.C., Wolfe, K.A., Arcibal, I.G., Leung, W.K., Dickson, D., Giordano, B.C., Power, M.E., Ferrance, J.P., Feldman, S.H., Norris, P.M., and Landers, J.P.: Microchip-based purification of DNA from biological samples. Anal. Chem. 75, 18801886 (2003).
25.Phinney, J.R., Conroy, J.F., Hosticka, B., Power, M.E., Ferrance, J.P., Landers, J.P., and Norris, M.P.: The design and testing of a silica sol-gel-based hybridization array. J. Non-Cryst. Solids 350, 3945 (2004).
26.Durucan, C. and Pantano, C.G.: Hybrid sol/gel coatings for DNA arrays and other lab-on-a-chip applications. In Handbook Sol-Gel Science Vol. III: Applications of Sol-Gel Technology, Sakka, S., Almeida, R.M., and Kozuka, H. ed.; Kluwer Academic Publishers: New York, 2004; pp. 551575.
27.Pierre, A., Bonnet, J., Vekris, A., and Portier, J.: Encapsulation of deoxyribonucleic acid molecules in silica and hybrid organic-silica gels. J. Mater. Sci. - Mater. Med. 12, 5155 (2001).
28.Numata, M., Sugiyasu, K., Hasegawa, T., and Shinkai, S.: Sol-gel reaction using DNA as a template: An attempt toward transcription of DNA into inorganic materials. Angew. Chem. Int. Ed. 43, 32793283 (2004).
29.Shinkai, S., Takeuchi, M., and Bae, A.H.: Rational design and creation of novel polymeric superstructures by oxidative polymerization utilizing anionic templates. Supramol. Chem. 17, 181186 (2005).
30.Shen, Y., Mackey, G., Rupcich, N., Gloster, D., Chiuman, W., Li, Y., and Brennan, J.D.: Entrapment of fluorescent signaling DNA enzymes in sol–gel-derived derived materials for metal ion sensing. Anal. Chem. 79, 34943503 (2005).
31.Rupcich, N., Nutiu, R., Yu, L., and Brennan, J.D.: Entrapment of fluorescent signaling DNA aptamers in sol–gel-derived silica. Anal. Chem. 77, 43004307 (2007).
32.Satoh, S., Fugetsu, B., Nomizu, B., and Nishi, N.: Functional DNA–silica composite prepared by sol–gel method. Polym. J. 37, 94101 (2006).
33.Fujiwara, M., Shiokawa, K., Hayashi, K., Morigaki, K., and Nakahara, Y.: Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres). J. Biomed. Mater. Res. Part A 81, 103112 (2007).
34.Nafisi, S., Saboury, A., Keramat, N., Neault, J-F., and Tajmir-Riahi, H.A.: Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J. Mol. Struct. 827, 3543 (2007).
35.Glaser, R.H., Wilkes, G.L., and Bronnimann, E.: Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J. Non-Cryst. Solids 113. 7387 (1989).
36.Brunauer, S., Deming, L.S., Deming, E., and Teller, E.: On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc. 62, 17231732 (1940).
37.Storck, S., Bretinger, H., and Maier, W.F.: Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal., A 174, 137146 (1998).
38.Groena, J.C., Peffera Louk, A.A., and Pérez-Ramı́rez, J.: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60, 117 (2003).
39.Brinker, C.J., Keefer, K.D., Schaefer, D.W., and Ashley, C.S.: Sol-gel transition in simple silicates. J. Non-Cryst. Solids 48, 4764 (1982).
40.Brinker, C.J., Keefer, D.K., Schaefer, D.W., Assink, R.A., Kay, B.D., and Ashley, C.S.: Sol-gel transition in simple silicates-II. J. Non-Cryst. Solids 63, 4549 (1984).
41.Jones, W.M. and Fischbach, D.B.: Novel processing of silica hydrosols and gels. J. Non-Cryst. Solids 101, 123126 (1988).
42.Brinker, C.J. and Scherer, G.W.: Sol→Gel→ glass: I. Gelation and gel structure. J. Non-Cryst. Solids 70, 301322 (1985).
43.Ying, J.Y. and Benzinger, J.B.: Structural evolution of alkoxide silica gels to glass: Effect of catalyst pH. J. Am. Ceram Soc. 76, 25712582 (1993).
44.Yamada, M. and Aono, H.: DNA–inorganic hybrid material as selective absorbent for harmful compounds. Polymer 49, 46584665 (2008).
45.Yamada, M., Kato, K., Nomizu, M., Sakairi, N., Ohkawa, K., Yamamoto, H., and Nishi, N.: Preparation and characterization of DNA films induced by UV irradiation. Chem. Eur. J. 8, 14071412 (2002).


Related content

Powered by UNSILO

Synthesis of DNA-encapsulated silica elaborated by sol–gel routes

  • Derya Kapusuz (a1) and Caner Durucan (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.