Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T11:24:03.668Z Has data issue: false hasContentIssue false

Synthesis of Al2O3–SiC from kyanite precursor

Published online by Cambridge University Press:  31 January 2011

A. Amroune
Affiliation:
Ceramics and Composites Research Group, GEMPPM Bat Blaise Pascal, INSA de Lyon, 69621 Villeurbanne Cedex, France
G. Fantozzi
Affiliation:
Ceramics and Composites Research Group, GEMPPM Bat Blaise Pascal, INSA de Lyon, 69621 Villeurbanne Cedex, France
Get access

Abstract

Carbothermal reduction of kyanite, a natural aluminosilicate with high alumina content (Al2O3 · SiO2), was used as a way to synthesize SiC–Al2O3 powder. Carbon black was mixed with the mineral precursor in a molar ratio of (C/SiO2) = 5.5. The Carbothermal reaction sequence was studied in the temperature range 1260–1550 °C. Completion of the reaction at 1550 °C gave β–SiC-whiskers and α–Al2O3 particles as final products. From observations, the impurities contained in the mineral precursor behave as catalysts for the vapor–liquid–solid whisker growth mechanism. When the specific surface area of the starting carbon was increased from 330 to 996 m2/g, the carbothermal reaction rate increased but the morphology of the SiC-whiskers became very irregular. This study aimed to identify the main reaction conditions for obtaining a favorable morphology of the synthesized powder for elaborating Al2O3–SiC-whisker composite materials by using low cost starting materials and a relatively simple in situ synthesis route in comparison to the conventional way of separately preparing the phases SiC (whiskers) and Al2O3 before elaborating composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Becher, P.F. and Wei, G.C., J. Am. Ceram. Soc. 67, 267 (1984).CrossRefGoogle Scholar
2.Petrovic, J. and Milewski, J.V., J. Mater. Sci. 20, 1167 (1985).CrossRefGoogle Scholar
3.Tiegs, T.N. and Becher, P.F., Am. Ceram. Soc. Bull. 66, 339 (1987).Google Scholar
4.Zhu, Y.T., Blumenthal, W.R., Taylor, S.T., and Lowe, T.C., J. Am. Ceram. Soc. 80, 1447 (1997).CrossRefGoogle Scholar
5.Lee, J.G. and Cutler, I.B., Am. Ceram. Soc. Bull. 54, 195 (1975).Google Scholar
6.Bootsma, G.A., Knippenberg, W.F., and Verspui, G., J. Crystal Growth 11, 297 (1971).CrossRefGoogle Scholar
7.Milewski, J.V., Gac, F.D., Petrovic, J.J., Skaggs, S.R., J. Mater. Sci. 20, 1160 (1985).Google Scholar
8.Chrysanthou, A., Grieveson, P., and Jha, A., J. Mater. Sci. 26, 3463 (1991).CrossRefGoogle Scholar
9.Shalek, P.D., Philips, D.S., Christiansen, D.E., Katz, J.D., Parkinson, W.J., and Petrovic, J.J., in Proc. Int. Conf. On Whisker-and-Fiber Toughened Ceramics, Oak Ridge, TN, 7–8 June 1988, edited by Bradley, R.A., Clark, D.E., Larsen, D.C., and Stiegler, J.O. (ASM International, OH) p. 53.Google Scholar
10.Wang, L., Wada, H., and Tien, T.Y., in Ceramic Powder Science, edited by Messing, G. H., (Am. Ceram. Soc., Westerville, OH, 1990), p. 291.Google Scholar
11.Shimada, S., Akazawa, N., and Kudo, K., J. Ceram. Soc. Jpn. 104, 992 (1996).Google Scholar
12.Kirchner, H.P. and Knoll, P., J. Am. Ceram. Soc. 46, 299 (1963).Google Scholar
13.Addamiano, A., J. Crystal Growth 58, 617 (1982).CrossRefGoogle Scholar
14.Motojima, S. and Hasegawa, M., J. of Crystal Growth 87, 311 (1988).CrossRefGoogle Scholar
15.Setaka, N. and Inoue, Z., J. Am. Ceram. Soc. 52, 624 (1969).Google Scholar
16.Yamada, S., Kimura, S., Yasuda, E., Tanabe, Y., and Asami, Y., J. Mater. Res. 3, 538 (1988).CrossRefGoogle Scholar
17.Wang, H. and Fishman, G.S., J. Am. Ceram. Soc. 74, 1519 (1991).CrossRefGoogle Scholar
18.Chaklader, A.C.D., Gupta, S.D., Lin, E.C.Y., and Gutowski, B., J. Am. Ceram. Soc. 75, 2283 (1992).Google Scholar
19.Amroune, A., Ph.D. Thesis (in French), INSA de Lyon, France (1998), p. 276.Google Scholar
20.Biernacki, J.P. and Wotzak, G.P., J. Am. Ceram. Soc. 72, 122 (1989).CrossRefGoogle Scholar
21.Wada, H. and Wang, L., J. Mater. Sci. 27, 1528 (1992).CrossRefGoogle Scholar
22.Campbell, W.B., in Whisker Technology, edited by Levitt, A.P. (Wiley, New York, 1970), p. 15.Google Scholar
23.Kennedy, P. and North, B., in Proc. of the British Ceram. Society (British Ceramic Society, Stoke-on-Trent, United Kingdom), Vol. 33, pp. 115.Google Scholar
24.Hurley, G.F. and Petrovic, J.J., in Advanced Composites Proceed-ings, (Am. Ceram. Soc., Dearborn, MI, 1985), pp. 207212.Google Scholar
25.Lio, S., Watanabe, M., Matsubara, M., and Matsuo, Y., J. Am. Ceram. Soc. 72, 1880 (1989).Google Scholar
26.Karasek, K.R., Bradley, S.A., Donner, J.F., Yeh, H.C., Schienle, J.L., and Fang, H.T., J. Am. Ceram. Soc. 72, 1907 (1989).CrossRefGoogle Scholar
27.Karasek, K.R., Bradley, S.A., Donner, J.F., Schienle, J.L., and Yeh, H.C., Ceram. Bull. 70, (1991).Google Scholar
28.Milewski, J.V., Adv. Ceram. Mater. 1, 36 (1986).Google Scholar
29.Durham, S.J.P., Shanker, K., and Drew, R.A.L., J. Am. Ceram. Soc. 74, 31 (1991).Google Scholar
30.Zhang, S.C. and Cannon, R., J. Am. Ceram. Soc. 67, 691 (1985).Google Scholar