Skip to main content Accessibility help
×
Home

Synthesis and dielectric properties of tungsten-based complex perovskites

  • D.D. Khalyavin (a1), Jiaping Han (a1), A.M.R Senos (a1) and P.Q. Mantas (a1)

Abstract

Ba2MeWO6 (Me=Mg, Ni, Zn) double perovskites were prepared by the conventional solid-state reaction in a wide temperature range. Single-phase ceramics were obtained only at low temperatures approximately 1200°C, whereas a small amount of second phases existed in the samples sintered at higher temperatures. All the compounds are characterized by the cubic perovskite structure (space group Fm3m) with a complete NaCl type ordering between B-site ions. Anomalous temperature variation of the dielectric loss tangent found in the Ba2NiWO6 perovskite is supposed to be connected with a dielectric relaxation due to electronic hopping within thermally activated Ni3+-6W(6-1/6)+/W5+-6Ni(2+1/6)+ clusters. Dielectric measurements showed that the other two perovskites—Ba2ZnWO6 and Ba2MgWO6—exhibit a positive value of the temperature coefficient of permittivity. Such temperature variation is assumed to be caused by a considerable influence of the second polar mode involving B-site ion vibrations on the low-frequency dielectric properties.

Copyright

Corresponding author

bAddress all correspondence to this author. e-mail: pmantas@cv.ua.pt

References

Hide All
1.Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 21, L624 (1982).
2.Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66, 421 (1983).
3.Desu, S.B. and O'Bryan, H.M., J. Am. Ceram. Soc. 68, 546 (1985).
4.Davies, P.K., Tong, J., and Negas, T., J. Am. Ceram. Soc. 80, 1727 (1997).
5.Akbas, M.A. and Davies, P.K., J. Am. Ceram. Soc. 81, 670 (1998).
6.Zurmühlen, R., Petzelt, J., Kamba, S., Kozlov, G., Volkov, A., Gorshunov, B., Dube, D., Tagantsev, A., and Setter, N., J. Appl. Phys. 77, 5351 (1995).
7.Zurmühlen, R., Colla, E., Dude, D.C., Petzelt, J., Reaney, I., Bell, A., and Setter, N., J. Appl. Phys. 76, 5864 (1994).
8.Takahashi, H., Ayusawa, K., and Sakamoto, N., Jpn. J. Appl. Phys. 36, 5597 (1997).
9.Reaney, I.M., Colla, E.L., and Setter, N., Jpn. J. Appl. Phys. 33, 3984 (1994).
10.Muller, O. and Roy, R., The Major Ternary Structural Families (Springer Verlag, Berlin, Germany, 1974).
11.Wersing, W. in Electronic Ceramics, Steele, B.C.H. (Elsevier Science Publishing, New York, 1991), pp. 67119.
12.Perry, C.H., McCarthy, D.J., and Pupprecht, G., Phys. Rev. 138, A1537 (1965).
13.Harrop, P.J., J. Mater. Sci. 4, 370 (1960).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed