Skip to main content Accessibility help
×
Home

Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition

  • S. Gupta (a1), B.R. Weiner (a1) and G. Morell (a2)

Abstract

The synthesis of microcrystalline and nanocrystalline carbon thin films using sulfur as an impurity addition to chemical vapor deposition (CVD) was investigated. Sulfur-incorporated microcrystalline diamond (μc-D:S) and nanocrystalline carbon (n-C:S) thin films were deposited on Mo substrates using methane (CH4), hydrogen (H2), and hydrogen sulfide (H2S) gas feedstocks by hot-filament CVD. These films were grown under systematically varied process parameters, while the methane concentration was fixed at 0.3% and 2% for μc-D:S and n-C:S, respectively, to study the corresponding variations of the films’ microstructure. Through these studies we obtained an integral understanding of the materials grown and learned how to control key material properties. The nanocrystalline nature of the material was proposed to be due to the change in the growth mechanisms in the gas phase (continuous secondary nucleation). The growth rate (G) was found to increase with increasing TS and [H2S] in gas phase, thus following the chemisorption model that describes the surface reactions. One of the propositions for the increase was that H2S increases the production rates of methane and consequent methyl radicals without much of its own consumption, which is almost negligible and increases the carbon-containing species. This is analogous to the increase of G with increasing methane concentration, but for the relatively high S/C ratio used here, there is a possibility of its incorporation in the material, however small. This particular conjecture was verified. In this context, the results are discussed in terms of the decomposition of reactant gases (CH4/H2/H2S) that yield ionized species. The inferences drawn are compared to those grown without sulfur to study the influence of sulfur addition to the CVD.

Copyright

References

Hide All
Angus, J.C., Ann. Rev. Mater. Sci. 21, 221 (1991); R. Kalish, in Properties of Diamond, edited by G. Davies (INSPEC, London, U.K., 1994), Chap. 6, and references therein.
Garrido, J.A., Nebel, C.E., Stutzmann, M., Gheeraert, E., Casanova, N., Bustarret, E., and Deneuville, A., Diamond Relat. Mater. 11, 347 (2002); M. Werner, R. Job, A. Zaitsev, W.R. Fahrner, W. Seifert, C. Johnston, and P.R. Chalker, Phys. Status Solidi A 154, 385 (1996).
Angus, J.C., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J., Jansen, F. (CRC, Boca Raton, FL, 1986); P.K. Bachmann and R. Messier, Chem. Eng. News 67, 24 (1989).
Nazare, M.H., in Properties, Growth, and Application of Diamond, EMIS Datareview Series, edited by Davies, G. (INSPEC, London, U.K., 2001), p. 85.
Yoder, M.N., in Synthetic Diamond: Emerging CVD Science and Technology, edited by Spear, K.E., Dismukes, J.P. (John Wiley and Sons, New York, 1994), p. 4; J.E. Field, in The Properties of Diamonds (Academic Press, London, U.K., 1979), p. 151.
John, P., Diamond Relat. Mater. 11, 861 (2002).
Cui, J.B., Robertson, J., and Milne, W.I., Diamond Relat. Mater. 10, 868 (2001), and references therein.
Gupta, S., Katiyar, R.S., Gilbert, D.R., Singh, R.K., and Morell, G., J. Appl. Phys. 88, 5695 (2000), and references therein.
Weide, J. Van der and Nemanich, R.J., Appl. Phys. Lett. 62, 1878 (1993).
Weide, J. Van der and Nemanich, R.J., Phys. Rev. B 49, 13629 (1994).
Chen, K.H., Lai, Y.L., Chen, L.C., Wu, J.Y., and Kao, F.J., Thin Solid Films 270, 143 (1995); K.H. Chen, J.Y. Wu, L.C. Chen, C.C. Juan, and T. Hsu, Electrochem. Soc. Proc. 95-21, 57 (1995).
Yarbrough, W.A. and Messier, R., Science 247, 688 (1990).
Ulczynski, M.J., Reinhard, D.K., Prytajko, M., and Amusen, J., in Advances in New Diamond Science and Technology, Proceedings of the 4th International Conference on New Diamond Science and Technology, edited by Kaito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yihikawa, M. (MYU, Tokyo, Japan, 1994), p. 41.
Kalish, R., Diamond Relat. Mater. 10, 1749 (2001), and references therein.
Gheeraert, E., Koizumi, S., Traji, T., and Kanda, H., Solid State Commun. 113, 577 (2000).
Gheeraert, E., Casanova, N., Tajani, A., Deneuville, A., Bustarret, E., Garrido, J.A., Nebel, C.E., and Stutzmann, M., Diamond Relat. Mater. 11, 289 (2002).
Nishitani-Gamo, M., Xiao, C., Zhang, Y., Yasu, E., Kikuchi, Y., Sakaguchi, I., Suzuki, T., Sato, Y., and Ando, T., Thin Solid Films 382, 113 (2001), and references therein.
Kalish, R., Reznik, A., Uzan-Saguy, C., Cytermann, C., Appl. Phys. Lett. 76, 757 (2000).
Thonke, K. and Sauer, R., in Properties, Growth, and Applications of Diamond, edited by Nazaré, M.H., Neves, A.J. (INSPEC Data Review, London, U.K., 2001), p. 229; K. Thonke, personal communication.
Gupta, S., Weiner, B.R., and Morell, G., J. Appl. Phys. 91, 10088 (2002), and references therein.
Shenai, K. and Baglia, B.J., in Proc. 1st International Symposium Diamond and Diamond-Like Films, edited by Dismukes, J.P., Purdes, A.J., Meyerson, B.S., Moustakas, T.D., Spear, K.E., Ravi, K.V., and Yoder, M. (The Electrochemical Society, Penington, NJ, 1989), p. 405.
Buckley-Golder, I.M., Lande, S., Chalker, P.R., and Crispin, R.M., in HITEN -An Industrial Strategy for High Temperature Electronics in Europe: 1995 to 2005 (High Temperature Electronics Network, 1994).
Spencer, E.G., Schmidt, P.H., Roy, D.C., and Salsalone, F.J., Appl. Phys. Lett. 29, 118 (1976).
Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).
Gruen, D., Ann. Rev. Mater. Sci. 29, 211 (1999), and references therein.
Lifshitz, Y., in The Physics of Diamond, Proceedings of the International School of Physics “Enrico Fermi,” Course CXXXV, edited by Paoletti, A., Tucciarone, A. (IOS Press, Amsterdam, The Netherlands, 1997), pp. 209211.
Lifshitz, Y., Diamond Relat. Mater. 8, 1659 (1999).
Grill, A., Diamond Relat. Mater. 8, 428 (1999), and references therein.
Mckenzie, D.R., Rep. Progr. Phys. 59, 1611 (1996).
Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953 (1971);
Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A.R., and Auciello, O., J. Appl. Phys. 90, 118 (2001).
Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth. 62, 642 (1983).
Yarbrough, W.A. and Roy, R., in Diamond and Diamond-like Material Synthesis, G.H. Johnson, M.W. Geis, and A.R. Badzian (1988), pp. 77, and references therein.
Mirtich, M.J., Mater. Sci. Forum, 52 & 53, 217 (1989).
Bhusari, D.M., Yang, J.R., Wang, T.Y., Lin, S.T., Chen, K.H., and Chen, L.C., Sol. Stat. Commun. 107, 301 (1998), and references therein.
Sharda, T., Rahaman, M.M., Nukaya, Y., Soga, T., Jimbo, T., and Umeno, M., Diamond Relat. Mater. 10, 352 (2001).
Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A.R., and Auciello, O., J. Appl. Phys. 90, 183 (2001), and references therein.
Nistor, L.C., Landuyt, J. Van, Ralchenko, V.G., Obraztsova, E.D., and Smolin, A.A., Diamond Relat. Mater. 6, 159 (1997), and references therein.
Corrigan, T.D., Krauss, A.R., Gruen, D.M., Auciello, O., and Chang, in Amorphous and Nanostructured Carbon, edited by Robertson, J., Sullivan, J.P., Zhou, O., Allen, T.B., and Coll, B.F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000), 233.
Morrison, N.A., Muhl, S., Rodil, S.E., Ferrari, A.C., Nesladek, M., Milne, W.I., Robertson, J., Phys. Status Solidi A 172, 79 (1999).
Alterowitz, S.A., Warner, J.D., Liu, D.C., and Pouch, J.J., J. Electrochem. Soc. 133, 2339 (1986).
Mckenzie, D.R., Muller, D.A., and Paithorpe, B.A., Phy. Rev. Lett. 67, 773 (1991).
Robertson, J., Philos. Mag. B 76, 335 (1997), and references therein.
Beckmann, R., Sobisch, B., and Kulisch, W., Proceedings of the 3rd International Symposium on Diamond Materials (Electrochemical Society Proceedings 93-17, Pennington, NJ, 1993), p. 1206.
Frauenheim, T., Jungnickel, G., Sitch, P. et al. Diamond Relat. Mater. 7, 348 (1998).
Theije, F.K. de, Schermer, J.J., and Enckevort, W.J.P. van, Diamond Relat. Mater. 9, 1439 (2000).
Patterson, D.E., Chu, C.J., Bai, B.J., Komplin, N.J., Hauge, R.H., and Margrave, J.L., in Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier Science Puiblishers, Amsterdam, The Netherlands, 1991), p. 569.
Barber, G.D. and Yarbrough, W.A., J. Am. Ceram. Soc. 80, 1560 (1997).
Dandy, D.S., Thin Solid Films 381, 1 (2001).
Sternschulte, H., Schreck, M., and Stritzker, B., Diamond Relat. Mater. 11, 296 (2002).
Gupta, S., Weiner, B.R., and Morell, G., Appl. Phys. Lett. 80, 1471 (2002).
Gupta, S., Weiner, B.R., and Morell, G., Diamond Relat. Mater. 11, 799 (2002).
Hong, B., Lee, J., Collins, R.W., Kuang, Y., Drawl, W., Messier, R., Tsong, T.T., and Strausser, Y.F., Diamond Relat. Mater. 6, 55 (1997).
Gupta, S., Weiner, B.R., and Morell, G., J. Vac. Sci. Technol. B 20, (2002).
Wang, Y. and Hamers, R.J., Appl. Phys. 66, 2057 (1995).
Bramblett, T.R., Lu, Q., Karasawa, T., Hasan, M-A., Jo, S.K., Greene, J.E., J. Appl. Phys. 76, 1884 (1994).
Kersten, H. and Kroesen, G.M.W., J. Vac. Sci. Technol. A 8, 38 (1990).
Möller, W., Fukarek, W., Lange, K., Keudell, A. von, and Jacob, W., Jpn. J. Appl. Phys. 34, 2163 (1995); H. Deutsch and M. Schmidt, Beitr. Plasmaphys. 21, 279 (1981).
Sonoda, S., Won, J.H., Yagi, H., Hatta, A., Ito, T., and Hiraki, A., Appl. Phys. Lett. 70, 2574 (1997).
Muller-Sebert, W., Worner, E., Fuchs, F., Wild, C., and Koidl, P., Appl. Phys. Lett. 68, 759 (1996).
Petherbridge, J.R., May, P.W., Fuge, G.M., Rosser, K.N., and Ashfold, M.N.R., Diamond Relat. Mater. 11, 301 (2002).
Gupta, S., Weiner, B.R., and Morell, G., J. Mater. Res. 17, 1820 (2002), and references therein.
Lang, T., Stiegler, J., Kaenel, Y. von, and Blank, E., Diamond Relat. Mater. 5, 1171 (1996).
Connel, L.L., Fleming, J.W., Chu, H-N., Vestyck, D.J., Jr., Jensen, E., and Butler, J.E., J. Appl. Phys. 78, 3622 (1995).
Haubner, R. and Lux, B., Diamond Relat. Mater. 2, 1277 (1993).
Haubner, R., Bohr, S., and Lux, B., Diamond Relat. Mater. 8, 171 (1999).
Perrin, P.D., Richard, C., and Martin, R., J. Chim. Phys. 85, 185 (1988) 185.
Connel, L.L., Fleming, J.W., Chu, H-N., Vestyck, D.J., Jr., Jensen, E., and Butler, J.E., J. Appl. Phys. 78, 3622 (1995).
Hsu, W.L., J. Vac. Sci. Technol A 6, 1803 (1988).
Cullity, B.D., in Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, MA, 1978), p. 102111.
N-Gamo, M., Xiao, C., Zhang, Y., Yasu, E., Kikuchi, Y., Sakaguchi, I., Suzuki, T., Sato, Y., and Ando, T., Thin Solid Films 382, 113 (2001).
Knight, D.S. and White, W.B., J. Mater. Res. 4, 385 (1989);
Yoshikawa, M., Mater. Sci. Forum, 52 & 53, 365 (1989).
Nemanich, R.J., Glass, J.T., Luckovsky, G., and Shröder, R.E., J. Vac. Sci. Technol. A 6, 1783 (1988), and references therein.
Chhowalla, M., Ferrari, A.C., Robertson, J., and Amaratunga, G.A.J., Appl. Phys. Lett. 76, 1419 (2000).
Gupta, S., Weiner, B.R., and Morell, G., U.S. Patent pending filed in 2002.
Gupta, S., Martinez, A., Weiner, B.R., and Morell, G., Appl. Phys. Lett. 80, 283 (2002), and references therein.
Seigbahn, K., Nordling, C., Johansson, G., Hedman, J., Heden, F., Hamrin, K., Gelius, U., Bergmark, T., Werme, L.O., Manne, R., and Baer, Y., in ESCA Applied to Free Molecules (North-Holland, Amsterdam, The Netherlands, 1969).
Sherwood, P.M.A., in Practical Surface Analysis by AES and XPS, 2nd ed., edited by Briggs, D., Seah, M.P. (Wiley, Chichester, U.K., 1983), Vol. 1.
Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corp., Minneapolis, MN, 1992).
Evans, S. and Thomas, J.M., Proc. Roy. Soc. (London) A 353, 103 (1977).
Enderlein, R. and Harrison, W.A., Phys. Rev. B 30, 1867 (1990).
Castner, D.G., Hinds, K., and Grainger, D.W., Langmuir 12, 5083 (1996).
Ratner, B.D., Surf. Interface Anal. 23, 521 (1995).
Chourasia, A.R., Chopra, D.R., Sharma, S.C., Green, M., Dark, C.A., Hyer, R.C., Thin Solid Films 193–194, 1079 (1990), and Ref. 7 therein.
Sun, F., Grainger, D.W., Castner, D.G., and Leach-Scampavia, D.K., Macromolecules 27, 3053 (1994).
Frenklach, M. and Spear, K.E., J. Mater. Res. 3, 133 (1988).
Spicka, H., Greisser, M., Hutter, H., Grasserbauer, M., Bohr, S., Haubner, R., and Lux, B., Diam. Relat. Mater. 5, 383 (1996).
Waite, M.M. and Shah, S.I., Appl. Phys. Lett. 60, 2344 (1992).
Shiao, J., Zorman, C.A., and Hoffman, R.W., in Scientific Basis for Nuclear Waste Management XX, edited by Gray, W.J., Triay, I.R. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), p. 465.
Zapol, P., Sternberg, M., Curtiss, L.A., Frauenheim, T., and Gruen, D.M. (unpublished).
Shirley, D.A., Phys. Rev. B 5, 4709 (1972); H.E. Bishop, Surf. Interface Anal. 3, 272 (1981).
Salaneck, W.R., Lipari, N.O., Zallen, R., Liang, K. S., Phys. Rev. B 12, 1493 (1975).
F. Le Normand, Hommet, J., Szörényi, T., Fuchs, C., and Fogarassy, E., Phys. Rev. B 64, 235416 (2001).
Zhang, W.T., Sjostorm, H., Ivanov, I., Xing, K.Z., Broitman, E., Sallaneck, W.R., Greene, J.E., Sundgren, J.E., J. Vac. Sci. Technol. A 14, 2696 (1996).

Related content

Powered by UNSILO

Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition

  • S. Gupta (a1), B.R. Weiner (a1) and G. Morell (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.