Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-18T22:26:44.420Z Has data issue: false hasContentIssue false

Synthesis and characterization of homogeneous lead-substituted tin oxide with the (110) face of rutile structure

Published online by Cambridge University Press:  31 January 2011

Chika Nozaki
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619–0292, Japan
Takashi Yamada
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619–0292, Japan
Kenji Tabata
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619–0292, Japan, and Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama-cho, Ikoma-shi, Nara 630–0101, Japan
Eiji Suzuki
Affiliation:
Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619–0292, Japan, and Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama-cho, Ikoma-shi, Nara 630–0101, Japan
Get access

Abstract

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sberveglieri, G., Oxidic Semiconductor Gas Sensors: Gas Sensors (Kluwer Academic, Dordrecht, The Netherlands, 1992).Google Scholar
2. Williams, D.E. and Pratt, K.F.E, J. Chem. Soc., Faraday Trans. 94, 3493 (1998).Google Scholar
3. Williams, D.E. and Pratt, K.F.E, J. Chem. Soc., Faraday Trans. 91, 1961 (1995).Google Scholar
4. Williams, D.E. and Pratt, K.F.E, J. Chem. Soc., Faraday Trans. 92, 4497 (1996).Google Scholar
5. Williams, D.E., Henshaw, G.S., Pratt, K.F.E, and Peat, R., J. Chem. Soc., Faraday Trans. 91, 4299 (1995).Google Scholar
6. Nagasawa, Y., Tabata, K., and Ohnishi, H., Appl. Surf. Sci. 121/122, 327 (1997).CrossRefGoogle Scholar
7. Berry, F.J., Adv. Catal. 30, 97 (1981).CrossRefGoogle Scholar
8. Pearce, R. and Patterson, W.R., Catalysis and Chemical Processes, (Leonard Hill, London, United Kingdom, 1981).Google Scholar
9. Brown, I. and Patterson, W.R., J. Chem. Soc., Faraday Trans. I 79, 1431 (1983).Google Scholar
10. Mcatcer, J., J. Chem. Soc., Faraday Trans. I 75, 2768 (1979).Google Scholar
11. Pyke, D.R., Reid, R., and Tilley, R.J.D, J. Chem. Soc., Faraday Trans. I 76, 1174 (1980).Google Scholar
12. Weng, L.T., Spitaels, N., Yasse, B., Ladrière, J., Ruiz, P., and Delmon, B., J. Catal. 132, 319 (1991).CrossRefGoogle Scholar
13. Gercher, V.A., Cox, D.F., and Themlin, J.M., Surf. Sci. 306, 279 (1994).CrossRefGoogle Scholar
14. Meriaudeu, P., Naccache, C., and Tench, A.J., J. Catal. 21, 208 (1971).CrossRefGoogle Scholar
15. Shen, G.L., Casanova, R., and Thornton, G., Vacuum 43, 1129 (1992).CrossRefGoogle Scholar
16. Chang, S-C., J. Vac. Sci. Technol. 17, 366 (1980).CrossRefGoogle Scholar
17. Van Hooff, J.H.C and Van Helden, J.F., J. Catal. 8, 199 (1967).CrossRefGoogle Scholar
18. Nagasawa, Y., Choso, T., Karasuda, T., Shimomura, S., Ouyang, F., Tabata, K., and Yamaguchi, Y., Surf. Sci. 433–435, 226 (1999).CrossRefGoogle Scholar
19. Iwamoto, M., Yoda, Y., Yamazoe, N., and Selyama, T., J. Phys. Chem. 82, 2504 (1978).CrossRefGoogle Scholar
20. Cox, D.F., Fryberger, T.B., and Semancik, S., Surf. Sci. 224, 121 (1989).CrossRefGoogle Scholar
21. Tamaki, J., Nagaishi, M., Teraoka, Y., Miura, N., Yamazoe, N., Moriya, K., and Nakamura, Y., Surf. Sci. 221, 183 (1989).CrossRefGoogle Scholar
22. Shen, G.L., Casanova, R., and Thornton, G., Vacuum 43, 1129 (1992).CrossRefGoogle Scholar
23. Clark, R.J.H, Cridland, L., Kariaki, B.M., Harris, K.D.H, and Withnall, R., J. Chem. Soc., Dalton Trans. 16, 2577 (1995).CrossRefGoogle Scholar
24. Hashemi, T., Brikman, A.W., and Wilson, M.J., J. Mater. Sci. Lett. 11, 666 (1992).CrossRefGoogle Scholar
25. Sugawara, F., Syono, Y., and Akimoto, S., Mater. Res. Bull. 3, 529 (1968).CrossRefGoogle Scholar
26. Choi, W.K., Cho, J.S., Cho, J., Choi, S.C., Jung, H-J., and Koh, S.K., J. Korean Phys. Soc. 31, 369 (1997).Google Scholar
27. Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectroscopic Identification of Organic Compounds, 4th ed. (Wiley, New York, 1981).Google Scholar
28. Lau, C.L. and Wertheim, G.K., J. Vac. Sci. Technol. 15, 622 (1978).CrossRefGoogle Scholar
29. Sanjinès, R., Coluzza, C., Rosenfeld, D., Gozzo, F., Alenéras, Ph., Lévy, F., and Magaritondo, G., J. Appl. Phys. 73, 3997 (1993).CrossRefGoogle Scholar
30. Kövér, L., Koyácas, Z., Sanjinés, R., Moretti, G., Cserny, I., Margaritondo, G., Pálinkás, J., and Adachi, H., Surf. Inter. Anal. 23, 461 (1995).CrossRefGoogle Scholar
31. Briggs, D. and Seah, M.P., Practical Surface Analysis, 2nd ed. (Wiley, New York, 1990), pp. 635638.Google Scholar