Skip to main content Accessibility help
×
Home

Surface treatment of titanium by anodization and iron deposition: mechanical and biological properties

  • Murali Krishna Duvvuru (a1), Lupeng Wu (a2), Nicole S. Lin (a3), Tao Xu (a3) and Sahar Vahabzadeh (a1)...

Abstract

Surface modification of titanium and titanium alloys is a common method to improve anchoring of bone tissue and implants in hard tissue engineering applications. In the current work, a combination of chemical and physical methods (anodization and physical vapor deposition) was used to roughen the titanium surface and deposit iron (Fe) on the surface of titanium at different thicknesses. The optimized thickness of 100 Å was selected for mechanical and biological characterization. We found that anodization increases the surface roughness of Ti from 21 ± 0 to 229 ± 9 nm, whereas Fe deposition does not change it significantly. Our results also showed that surface modification of Ti by anodization increases the proliferation of osteosarcoma cells at both time points, whereas Fe-deposited samples showed the lowest cellular activity. These results suggest that Fe-deposited Ti implants may be suitable candidates for patients with osteosarcoma, as the proliferation of malignant cells decreases in the presence of Fe.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: svahabzadeh@niu.edu

References

Hide All
1.Manivasagam, G., Singh, A.K., Rajamanickam, A., and Gogia, A.: Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Prog. Mater. Sci. 54, 397425 (2009).
2.Suska, F., Emanuelsson, L., Johansson, A., Tengvall, P., and Thomsen, P.: Fibrous capsule formation around titanium and copper. J. Biomed. Mater. Res. 85, 888896 (2008).
3.Jemat, A., Ghazali, M.J., Razali, M., and Otsuka, Y.: Surface modifications and their effects on titanium dental implants. BioMed Res. Int. 2015, 111 (2015).
4.Cha, M-A., Shin, C., Kannaiyan, D., Jang, Y.H., Kochuveedu, S.T., Ryu, D.Y., and Kim, D.H.: A versatile approach to the fabrication of TiO2 nanostructures with reverse morphology and mesoporous Ag/TiO2 thin films via cooperative PS-b-PEO self-assembly and a sol–gel process. J. Mater. Chem. 19, 72457250 (2009).
5.Camargo, W.A., Takemoto, S., Hoekstra, J.W., Leeuwenburgh, S.C.G., Jansen, J.A., van den Beucken, J.J.J.P., and Alghamdi, H.S.: Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 57, 511523 (2017).
6.Jain, S., Scott Williamson, R., and Roach, M.D.: Surface characterization, shear strength, and bioactivity of anodized titanium prepared in mixed-acid electrolytes. Surf. Coat. Technol. 325, 594603 (2017).10.1016/j.surfcoat.2017.07.010
7.Rahman, Z.U., Shabib, I., and Haider, W.: Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys. Mater. Sci. Eng., C 67, 675683 (2016).
8.Hempel, F., Finke, B., Zietz, C., Bader, R., Weltmann, K-D., and Polak, M.: Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol. 256, 5258 (2014).
9.Hung, K-Y., Lai, H-C., Feng, H-P., Hung, K-Y., Lai, H-C., and Feng, H-P.: Characteristics of RF-sputtered thin films of calcium phosphate on titanium dental implants. Coatings 7, 126135 (2017).
10.Roy, M., Bandyopadhyay, A., and Bose, S.: Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf. Coat. Technol. 205, 27852792 (2011).
11.El-wassefy, N.A., Hammouda, I.M., Habib, A.N.E.A., El-awady, G.Y., and Marzook, H.A.: Assessment of anodized titanium implants bioactivity. Clin. Oral Implants Res. 25, e1e9 (2014).10.1111/clr.12031
12.Zhang, Y., Luo, R., Tan, J., Wang, J., Lu, X., Qu, S., Weng, J., and Feng, B.: Osteoblast behaviors on titania nanotube and mesopore layers. Regen. Biomater. 4, 8187 (2017).
13.Lv, L., Liu, Y., Zhang, P., Zhang, X., Liu, J., Chen, T., Su, P., Li, H., and Zhou, Y.: The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 39, 193205 (2015).10.1016/j.biomaterials.2014.11.002
14.Oh, S., Brammer, K.S., Li, Y.S.J., Teng, D., Engler, A.J., Chien, S., and Jin, S.: Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. 106, 21302135 (2009).10.1073/pnas.0813200106
15.Duvvuru, M.K., Han, W., Chowdhury, P.R., Vahabzadeh, S., Sciammarella, F., and Elsawa, S.F.: Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PloS One 14, e0216087 (2019).
16.Liu, C., Zhang, Y., Wang, L., Zhang, X., Chen, Q., and Wu, B.: A strontium-modified titanium surface produced by a new method and its biocompatibility in vitro. PloS One 10, e0140669 (2015).10.1371/journal.pone.0140669
17.Liang, Y., Xu, J., Chen, J., Qi, M., Xie, X., and Hu, M.: Zinc ion implantation-deposition technique improves the osteoblast biocompatibility of titanium surfaces. Mol. Med. Rep. 11, 42254231 (2015).
18.Pokrowiecki, R., Zaręba, T., Szaraniec, B., Pałka, K., Mielczarek, A., Menaszek, E., and Tyski, S.: In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int. J. Nanomed. 12, 42854297 (2017).
19.Li, X., Huang, Q., Liu, L., Zhu, W., Elkhooly, T.A., Liu, Y., Feng, Q., Li, Q., Zhou, S., Liu, Y., and Wu, H.: Reduced inflammatory response by incorporating magnesium into porous TiO2 coating on titanium substrate. Colloids Surf., B 171, 276284 (2018).
20.Liu, W., Golshan, N.H., Deng, X., Hickey, D.J., Zeimer, K., Li, H., and Webster, T.J.: Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale 8, 1578315794 (2016).
21.Vahabzadeh, S. and Bose, S.: Effects of iron on physical and mechanical properties, and osteoblast cell interaction in β-tricalcium phosphate. Ann. Biomed. Eng. 45, 819828 (2017).
22.Du, S., Li, J., Du, C., Huang, Z., Chen, G., and Yan, W.: Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 8, 94109424 (2016).
23.Torti, S.V. and Torti, F.M.: Iron and cancer: More ore to be mined. Nat. Rev. Cancer 13, 342355 (2013).
24.Liu, S. and Wang, Q.J.: Determination of Young's modulus and Poisson's ratio for coatings. Surf. Coat. Technol. 201, 64706477 (2007).10.1016/j.surfcoat.2006.12.021
25.Alves, S.A., Ribeiro, A.R., Gemini-Piperni, S., Silva, R.C., Saraiva, A.M., Leite, P.E., Perez, G., Oliveira, S.M., Araujo, J.R., Archanjo, B.S., Rodrigues, M.E., Henriques, M., Celis, J-P., Shokuhfar, T., Borojevic, R., Granjeiro, J.M., and Rocha, L.A.: TiO2 nanotubes enriched with calcium, phosphorous and zinc: Promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv. 7, 4972049738 (2017).
26.Gulati, K., Ramakrishnan, S., Aw, M.S., Atkins, G.J., Findlay, D.M., and Losic, D.: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8, 449456 (2012).
27.Damodaran, V.B., Bhatnagar, D., Leszczak, V., and Popat, K.C.: Titania nanostructures: A biomedical perspective. RSC Adv. 5, 3714937171 (2015).10.1039/C5RA04271B
28.Tallarico, D.A., Gobbi, A.L., Paulin Filho, P.I., Maia da Costa, M.E.H., and Nascente, P.A.P.: Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Mater. Sci. Eng., C 43, 4549 (2014).10.1016/j.msec.2014.07.013
29.Lilja, M., Genvad, A., Astrand, M., Strømme, M., and Enqvist, H.: Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity. J. Mater. Sci. Mater. Med. 22, 27272734 (2011).
30.Savale, P.A.: Physical vapor deposition (PVD) methods for synthesis of thin films: A comparative study. Arch. Appl. Sci. Res. 8, 18 (2016).
31.S Smith, B., Yoriya, S., Grissom, L., A Grimes, C., and Popat, K.: Hemocompatibility of titania nanotube arrays. J. Biomed. Mater. Res., Part A 95A, 350360 (2011).
32.Indira, K., Mudali, U.K., and Rajendran, N.: In vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications. J. Biomater. Appl. 29, 113129 (2014).
33.Das, K., Bose, S., and Bandyopadhyay, A.: TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res., Part A 90, 225237 (2009).
34.Alves, S.A., Rossi, A.L., Ribeiro, A.R., Toptan, F., Pinto, A.M., Celis, J-P., Shokuhfar, T., and Rocha, L.A.: Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms. Wear 384–385, 28 (2017).
35.Hamlekhan, A., Butt, A., Patel, S., Royhman, D., Takoudis, C., Sukotjo, C., Yuan, J., Jursich, G., Mathew, M.T., Hendrickson, W., Virdi, A., and Shokuhfar, T.: Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. PloS One 9, e96213 (2014).10.1371/journal.pone.0096213
36.Alves, S.A., Rossi, A.L., Ribeiro, A.R., Toptan, F., Pinto, A.M., Shokuhfar, T., Celis, J-P., and Rocha, L.A.: Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J. Mech. Behav. Biomed. Mater. 80, 143154 (2018).
37.Shokuhfar, T., Arumugam, G.K., Heiden, P.A., Yassar, R.S., and Friedrich, C.: Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3, 30983102 (2009).
38.Crawford, G.A., Chawla, N., and Houston, J.E.: Nanomechanics of biocompatible TiO2 nanotubes by interfacial force microscopy (IFM). J. Mech. Behav. Biomed. Mater. 2, 580587 (2009).
39.Xu, Y.N., Liu, M.N., Wang, M.C., Oloyede, A., Bell, J.M., and Yan, C.: Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays. J. Appl. Phys. 118, 145301 (2015).
40.Tang, H., Li, Y., Ma, J., Zhang, X., Li, B., Liu, S., Dai, F., and Zhang, X.: Improvement of biological and mechanical properties of titanium surface by anodic oxidation. Bio-Med. Mater. Eng. 27, 485494 (2016).
41.Tsai, M-T., Chang, Y-Y., Huang, H-L., Wu, Y-H., and Shieh, T-M.: Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films. Surf. Coat. Technol. 303, 268276 (2016).
42.Bandyopadhyay, A., Shivaram, A., Tarafder, S., Sahasrabudhe, H., Banerjee, D., and Bose, S.: In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 45, 249260 (2017).10.1007/s10439-016-1673-8
43.Yao, C., Slamovich, E.B., and Webster, T.J.: Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res., Part A 85, 157166 (2008).10.1002/jbm.a.31551
44.Shivaram, A., Bose, S., and Bandyopadhyay, A.: Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. J. Mech. Behav. Biomed. Mater. 59, 508518 (2016).10.1016/j.jmbbm.2016.02.028
45.Alves, S.A., Patel, S.B., Sukotjo, C., Mathew, M.T., Filho, P.N., Celis, J-P., Rocha, L.A., and Shokuhfar, T.: Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface. Appl. Surf. Sci. 399, 682701 (2017).
46.Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844854 (2007).
47.Vasilescu, C., Drob, P., Vasilescu, E., Demetrescu, I., Ionita, D., Prodana, M., and Drob, S.I.: Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corros. Sci. 53, 992999 (2011).
48.Truong, V.K., Lapovok, R., Estrin, Y.S., Rundell, S., Wang, J.Y., Fluke, C.J., Crawford, R.J., and Ivanova, E.P.: The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31, 36743683 (2010).
49.Medeiros, D.M., Plattner, A., Jennings, D., and Stoecker, B.: Bone morphology, strength, and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J. Nutr. 132, 31353141 (2002).
50.Katsumata, S., Tsuboi, R., Uehara, M., and Suzuki, K.: Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci., Biotechnol., Biochem. 70, 25472550 (2006).10.1271/bbb.60221
51.Bose, S., Banerjee, D., Robertson, S., and Vahabzadeh, S.: Enhanced in vivo bone and blood vessel formation by iron oxide and silica doped 3D printed tricalcium phosphate scaffolds. Ann. Biomed. Eng. 46, 12411253 (2018).
52.Kazmierski, K.J., Ogilvie, G.K., Fettman, M.J., Lana, S.E., Walton, J.A., Hansen, R.A., Richardson, K.L., Hamar, D.W., Bedwell, C.L., Andrews, G., and Chavey, S.: Serum zinc, chromium, and iron concentrations in dogs with lymphoma and osteosarcoma. J. Vet. Intern. Med. 15, 585588 (2001).
53.Yu, G-H., Fu, L., Chen, J., Wei, F., and Shi, W-X.: Decreased expression of ferritin light chain in osteosarcoma and its correlation with epithelial-mesenchymal transition. Eur. Rev. Med. Pharmacol. Sci. 22, 25802587 (2018).
54.Li, P., Zheng, X., Shou, K., Niu, Y., Jian, C., Zhao, Y., Yi, W., Hu, X., and Yu, A.: The iron chelator Dp44mT suppresses osteosarcoma's proliferation, invasion, and migration: In vitro and in vivo. Am. J. Transl. Res. 82, 53705385 (2016).

Keywords

Surface treatment of titanium by anodization and iron deposition: mechanical and biological properties

  • Murali Krishna Duvvuru (a1), Lupeng Wu (a2), Nicole S. Lin (a3), Tao Xu (a3) and Sahar Vahabzadeh (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.