Skip to main content Accessibility help

Surface microstructure characterization on shot peened (TiB + TiC)/Ti–6Al–4V by Rietveld whole pattern fitting method

  • Lechun Xie (a1), Qiang Feng (a2), Yan Wen (a3), Liqiang Wang (a1), Chuanhai Jiang (a1) and Weijie Lu (a1)...


The surface microstructure of shot peened (TiB + TiC)/Ti–6Al–4V is investigated using Rietveld whole pattern fitting method. The domain size and microstrain of them are obtained. By comparing the calculated results between them, it can be found that the microstructure variations of Ti–6Al–4V are more severe than those of (TiB + TiC)/Ti–6Al–4V, which is due to the effect of reinforcements' resistance to the deformation of the surface layer. The distribution of average domain size and microstrain of (TiB + TiC)/Ti–6Al–4V at varying depths are calculated, and the results are discussed in detail. Moreover, the probability distribution of the domain size at different depths is obtained using the lognormal distribution model. Based on the discussion, the results obtained from Rietveld whole pattern fitting method agree with the results calculated using the Voigt method, which reveals that the Rietveld method is an effective method of characterizing the surface microstructure of titanium matrix composites after shot peening treatments.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Girot, F.A., Majidi, A.P., and Chou, T.W.: Metal matrix composites. In Encyclopedia of Physical Science and Technology, 3rd ed., R.A. Meyers, ed. (Academic Press, New York, 2003); pp. 485493.
2. Tjong, S.C. and Ma, Z.Y.: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29, 49113 (2000).
3. Ranganath, S.: Review on particulate-reinforced titanium matrix composites. J. Mater. Sci. 32, 116 (1997).
4. Fitzpatrick, M.E., Withers, P.J., Baczmanski, A., Hutchings, M.T., Levy, R., Ceretti, M., and Lodini, A.: Changes in the misfit stresses in an Al/SiCp metal matrix composite under plastic strain. Acta Mater. 50, 10311040 (2002).
5. Wagner, L.: Mechanical surface treatments on titanium, aluminum and magnesium alloy. Mater. Sci. Eng., A 263, 210216 (1999).
6. Haghighi, S.E., Lu, H.B., Jian, G.Y., Cao, G.H., Habibi, D., and Zhang, L.C.: Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Mater. Des. 76, 4754 (2015).
7. Calin, M., Zhang, L.C., and Eckert, J.: Tailoring of microstructure and mechanical properties in a Ti-based bulk metallic glass-forming alloy. Scr. Mater. 57, 11011104 (2007).
8. Zhang, L.C. and Attar, H.: Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Adv. Eng. Mater. 18, 463475 (2016).
9. Lu, W., Zhang, D., Zhang, X., Sakata, T., and Mori, H.: Hrem study of TiB/Ti interfaces in a Ti–TiB–TiC in situ composite. Scr. Mater. 44, 10691075 (2001).
10. Tsang, H.T., Chao, C.G., and Ma, C.Y.: In situ fracture observation of a TiC/Ti MMC produced by combustion synthesis. Scr. Mater. 35, 10071021 (1996).
11. Man, H.C., Zhang, S., Cheng, F.T., and Yue, T.M.: Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti–6Al–4V by laser cladding. Scr. Mater. 44, 28012807 (2001).
12. Lu, W., Zhang, D., Zhang, X., Wu, R., Sakata, T., and Mori, H.: Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloys Compd. 327, 240247 (2001).
13. Wang, M., Lu, W., Qin, J., Zhang, D., Ji, B., and Zhu, F.: Superplastic behavior of in situ synthesized (TiB + TiC)/Ti matrix composite. Scr. Mater. 53, 265270 (2005).
14. Lu, J., Qin, J., Lu, W., Chen, Y., Zhang, D., and Hou, H.: Effect of hydrogen on superplastic deformation of (TiB + TiC)/Ti–6Al–4V composite. Int. J. Hydrogen Energy 34, 83088314 (2009).
15. Lu, J., Qin, J., Lu, W., Zhang, D., Hou, H., and Li, Z.: Effect of hydrogen on microstructure and high temperature deformation of (TiB + TiC)/Ti–6Al–4V composite. Mater. Sci. Eng., A 500, 17 (2009).
16. Lu, J., Qin, J., Chen, Y., Zhang, Z., Lu, W., and Zhang, D.: Superplasticity of coarse-grained (TiB + TiC)/Ti–6Al–4V composite. J. Alloys Compd. 490, 118123 (2010).
17. Almer, J., Cohen, J., and Moran, B.: The effect of residual macrostresses and microstresses on fatigue crack initiation. Mater. Sci. Eng., A 284, 268279 (2000).
18. Webster, G. and Ezeilo, A.: Residual stress distributions and their influence on fatigue lifetimes. Int. J. Fatigue 23, 375383 (2001).
19. Tekeli, S.: Enhancement of fatigue strength of SAE 9245 steel by shot peening. Mater. Lett. 57, 604608 (2002).
20. Zhang, P. and Lindemann, J.: Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scr. Mater. 52, 485490 (2005).
21. Xie, L., Jiang, C., Lu, W., Chen, Y., and Huang, J.: Effect of stress peening on surface layer characteristics of (TiB + TiC)/Ti–6Al–4V composite. Mater. Des. 33, 6468 (2012).
22. Young, R.A.: The Rietveld Method (International Union of Crystallography Monographs on Crystallography) (Oxford University Press, New York, 1995).
23. Ghosh, B. and Pradhan, S.K.: Microstructure characterization of nanocrystalline Fe3C synthesized by high-energy ball milling. J. Alloys Compd. 477, 127132 (2009).
24. Lutterotti, L., Scardi, P., and Maitrelli, P.: Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Crystallogr. 23, 246252 (1990).
25. Popa, N.C.: The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Crystallogr. 31, 176180 (1998).
26. Ghosh, B. and Pradhan, S.K.: One-step fastest method of nanocrystalline CuAlS2 chalcopyrite synthesis, and its nanostructure characterization. J. Nanopart. Res. 13, 23432350 (2011).
27. Lutterotti, L.: Maud - Materials Analysis Using Diffraction, Version 2.33,∼maud/ (2011). Accessed June 2014.
28. Ranganath, S., Vijayakumar, M., and Subrahmanyam, J.: Combustion-assisted synthesis of Ti–TiB–TiC composite via the casting route. Mater. Sci. Eng., A 149, 253257 (1992).
29. Zhang, X., Lu, W., Zhang, D., Wu, R., Bian, Y., and Fang, P.: In situ technique for synthesizing (TiB + TiC)/Ti composites. Scr. Mater. 41, 3946 (1999).
30. Hill, R. and Madsen, I.: Data collection strategies for constant wavelength Rietveld analysis. Powder Diffr. 2, 146162 (1987).
31. Young, R. and Wiles, D.: Profile shape functions in Rietveld refinements. J. Appl. Crystallogr. 15, 430438 (1982).
32. Lu, W., Zhang, D., Zhang, X., Bian, Y., Wu, R., Sakata, T., and Mori, H.: Microstructure and tensile properties of in situ synthesized (TiBw + TiCp)/Ti6242 composites. J. Mater. Sci. 36, 37073714 (2001).
33. SPIPTM User's and Reference Guide, The scanning probe image processor, Version 5.1, 2010.
34. Xie, L., Wang, L., Jiang, C., and Lu, W.: The variations of microstructures and hardness of titanium matrix composite (TiB + TiC)/Ti–6Al–4V after shot peening. Surf. Coat. Technol. 244, 6977 (2014).
35. Granqvist, C.G. and Buhrman, R.A.: Ultrafine metal particles. J. Appl. Phys. 47, 22002219 (1976).
36. Haas, V. and Birringer, R.: The morphology and size of nanostructured Cu, Pd and W generated by sputtering. Nanostruct. Mater. 1, 491504 (1992).
37. Kril, C. and Birringer, R.: Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis. Philos. Mag. A 77, 621640 (1998).
38. Popa, N.C. and Balzar, D.: An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J. Appl. Crystallogr. 35, 338346 (2002).
39. Balzar, D. and Popa, N.C.: Analyzing microstructure by Rietveld refinement. Rigaku J. 22, 1625 (2005).
40. Xie, L., Jiang, C., Lu, W., Feng, Q., and Wu, X.: Investigation on the surface layer characteristics of shot peened titanium matrix composite utilizing x-ray diffraction. Surf. Coat. Technol. 206, 511516 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed