Skip to main content Accessibility help

A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys

  • Yong Guo (a1), Liang Liu (a1), Yue Zhang (a1), Jingang Qi (a1), Bing Wang (a1), Zuofu Zhao (a1), Jian Shang (a1) and Jun Xiang (a1)...


A series of CoCrFeNiMox (x = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2) high-entropy alloys were designed to develop a eutectic high-entropy alloy system and to acquire a superfine eutectic structure. The results show that for the CoCrFeNiMox alloys, with the increase of Mo content from 0.2 to 1.2, the microstructures shift from a typical dendrite structure to a hypoeutectic microstructure (x = 0.6), and then to a fully eutectic microstructure (x = 0.8) with a lamellar spacing only 110 nm, and finally culminate in the hypereutectic structure (x = 1.0, x = 1.2). The XRD results show that CoCrFeNiMox alloys have a single FCC phase when x is 0.2 or 0.4. When Mo content is over 0.6, it begins to separate Cr9Mo21Ni20 intermetallic compounds. The hardness of the CoCrFeNiMox alloys is increasing significantly from 172.8 to 763.7 HV with the increase of Mo content. Meanwhile, the fracture strength increased but the ductility decreases. Among these alloys, the CoCrFeNiMo0.6 alloy shows excellent integrated mechanical properties of compressive fracture strength and strain, which are 2051 Mpa and 23%, respectively.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
3.Huang, C., Zhang, Y., Shen, J., and Vilar, R.: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).
4.Tong, C-J., Chen, M-R., Yeh, J-W., Lin, S-J., Chen, S-K., Shun, T-T., and Chang, S-Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).
5.Senkov, O., Senkova, S., Woodward, C., and Miracle, D.: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).
6.Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).
7.Nagase, T., Rack, P.D., Noh, J.H., and Egami, T.: In situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 59, 32 (2015).
8.Qiao, J.W., Ma, S.G., Huang, E.W., Chuang, C.P., Liaw, P.K., and Zhang, Y.: Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. Mater. Sci. Forum 688, 419 (2011).
9.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
10.Zhang, H., Pan, Y., He, Y., and Jiao, H.: Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl. Surf. Sci. 257, 2259 (2011).
11.Wen, L., Kou, H., Li, J., Chang, H., Xue, X., and Zhou, L.: Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics 17, 266 (2009).
12.Xia, S., Yang, X., Chen, M., Yang, T., and Zhang, Y.: The Al effects of Co-free and V-containing high-entropy alloys. Metals 7, 18 (2017).
13.Chen, S-K. and Kao, Y-F.: Near-constant resistivity in 4.2–360 K in a B2 Al2.08CoCrFeNi. AIP Adv. 2, 012111 (2012).
14.Glicksman, M.E.: Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer Science & Business Media, New York, NY, 2010).
15.Lu, Y., Dong, Y., Guo, S., Jiang, L., Kang, H., Wang, T., Wen, B., Wang, Z., Jie, J., Cao, Z., Ruan, H., and Li, T.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).
16.Mishra, A.K., Samal, S., and Biswas, K.: Solidification behaviour of Ti–Cu–Fe–Co–Ni high entropy alloys. Trans. Indian Inst. Met. 65, 725 (2012).
17.Guo, S., Ng, C., and Liu, C.T.: Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J. Alloys Compd. 557, 77 (2013).
18.Jiang, L., Cao, Z.Q., Jie, J.C., Zhang, J.J., Lu, Y.P., Wang, T.M., and Li, T.J.: Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J. Alloys Compd. 649, 585 (2015).
19.Tan, Y., Li, J., Wang, J., and Kou, H.: Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics 85, 74 (2017).
20.He, F., Wang, Z., Shang, X., Leng, C., Li, J., and Wang, J.: Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).
21.Liu, W.H., Yang, T., and Liu, C.T.: Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 210, 2 (2018).
22.Gao, X., Lu, Y., Zhang, B., Liang, N., Wu, G., Sha, G., Liu, J., and Zhao, Y.: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59 (2017).
23.Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H., Zhao, Y., Cao, Z., and Li, T.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).
24.He, F., Wang, Z., Cheng, P., Wang, Q., Li, J., Dang, Y., Wang, J., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).
25.Lu, Y., Jiang, H., Guo, S., Wang, T., Cao, Z., and Li, T.: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).
26.Ding, Z., He, Q., and Yang, Y.: Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Sci. China: Technol. Sci. 61, 159167 (2017).
27.Dong, Y., Jiang, L., Jiang, H., Lu, Y., Wang, T., and Li, T.: Effects of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high-entropy alloy. Mater. Des. 82, 9197 (2015).
28.E. ASTM: E9–89a, standard test methods of compression testing of metallic materials at room temperature. In Annual Book of ASTM Standards, Vol. 3 (ASTM International, Philadelphia, PA, 2000), pp. 19.
29.Shun, T-T., Chang, L-Y., and Shiu, M-H.: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater. Charact. 70, 63 (2012).
30.Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).
31.Jiang, H., Han, K., Qiao, D., Lu, Y., Cao, Z., and Li, T.: Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 4348 (2018).
32.Jiang, L., Lu, Y., Dong, Y., Wang, T., Cao, Z., and Li, T.: Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy. Appl. Phys. A: Mater. Sci. Process. 119, 291 (2015).
33.Wang, Z., Huang, Y., Yang, Y., Wang, J., and Liu, C.T.: Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 94, 28 (2015).
34.Liu, L., He, L.J., Qi, J.G., Wang, B., Zhao, Z.F., Shang, J., and Zhang, Y.: Effects of Sn element on microstructure and properties of SnxAl2.5FeCoNiCu multi-component alloys. J. Alloys Compd. 654, 327 (2016).
35.Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).
36.Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).
37.Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed