Skip to main content Accessibility help
×
Home

Submicro-sized Si–Ge solid solutions with high capacity and long cyclability for lithium-ion batteries

  • Kuber Mishra (a1), Xiao-Chen Liu (a2), Mark Geppert (a1), James J. Wu (a3), Jun-Tao Li (a4), Ling Huang (a4), Shi-Gang Sun (a4), Xiao-Dong Zhou (a5) and Fu-Sheng Ke (a2)...

Abstract

Mastery of strengthening strategies to achieve high-capacity anodes for lithium-ion batteries can shed light on understanding the nature of diffusion-induced stress and offer an approach to use submicro-sized materials with an ultrahigh capacity for large-scale batteries. Here, we report solute strengthening in a series of silicon (Si)–germanium (Ge) alloys. When the larger solute atom (Ge) is added to the solvent atoms (Si), a compressive stress is generated in the vicinity of Ge atoms. This local stress field interacts with resident dislocations and subsequently impedes their motion to increase the yield stress in the alloys. The addition of Ge into Si substantially improves the capacity retention, particularly in Si0.50Ge0.50, aligning with literature reports that the Si/Ge alloy showed a maximum yield stress in Si0.50Ge0.50. In situ X-ray diffraction studies on the Si0.50Ge0.50 electrode show that the phase change undergoes three subsequent steps during the lithiation process: removal of surface oxide layer, formation of cluster-size Lix(Si,Ge), and formation of crystalline Li15(Si,Ge)4. Furthermore, the lithiation process starts from higher index facets, i.e., (220) and (311), then through the low index facet (111), suggesting the orientation-dependence of the lithiation process in the Si0.50Ge0.50 electrode.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: kmishra@email.sc.edu
c)e-mail: kefs@whu.edu.cn

Footnotes

Hide All
d)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).
2.Dębski, A., Zakulski, W., Major, Ł., Góral, A., and Gąsior, W.: Enthalpy of formation of the Li22Si5 intermetallic compound. Thermochim. Acta 551, 53 (2013).
3.Hatchard, T.D. and Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).
4.Dismukes, J.P., Ekstrom, L., and Paff, R.J.: Lattice parameter and density in germanium–silicon alloys1. J. Phys. Chem. 68, 3021 (1964).
5.Wang, C., Wu, H., Chen, Z., McDowell, M.T., Cui, Y., and Bao, Z.: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042 (2013).
6.Liang, W., Yang, H., Fan, F., Liu, Y., Liu, X.H., Huang, J.Y., Zhu, T., and Zhang, S.: Tough germanium nanoparticles under electrochemical cycling. ACS Nano 7, 3427 (2013).
7.Zhao, K., Pharr, M., Vlassak, J.J., and Suo, Z.: Inelastic hosts as electrodes for high-capacity lithium-ion batteries. J. Appl. Phys. 109, 016110 (2011).
8.Murugesan, S., Harris, J.T., Korgel, B.A., and Stevenson, K.J.: Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem. Mater. 24, 1306 (2012).
9.Abel, P.R., Chockla, A.M., Lin, Y-M., Holmberg, V.C., Harris, J.T., Korgel, B.A., Heller, A., and Mullins, C.B.: Nanostructured Si1−xGex for tunable thin film lithium-ion battery anodes. ACS Nano 7, 2249 (2013).
10.Munao, D., Valvo, M., van Erven, J., Kelder, E.M., Hassoun, J., and Panero, S.: Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. J. Mater. Chem. 22, 1556 (2012).
11.Guo, J., Sun, A., Chen, X., Wang, C., and Manivannan, A.: Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 56, 3981 (2011).
12.Yang, D., Yu, X., Li, X., Wang, P., and Wang, L.: Germanium-doped crystal silicon for solar cells. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (Shanghai, 2010); p. 1994.
13.Wang, P., Yu, X., Li, Z., and Yang, D.: Improved fracture strength of multicrystalline silicon by germanium doping. J. Cryst. Growth 318, 230 (2011).
14.Song, T., Cheng, H., Choi, H., Lee, J-H., Han, H., Lee, D.H., Yoo, D.S., Kwon, M-S., Choi, J-M., Doo, S.G., Chang, H., Xiao, J., Huang, Y., Park, W.I., Chung, Y-C., Kim, H., Rogers, J.A., and Paik, U.: Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano 6, 303 (2011).
15.Duveau, D., Fraisse, B., Cunin, F., and Monconduit, L.: Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1−x electrodes for Li ion batteries. Chem. Mater. 27, 3226 (2015).
16.Wang, X., Yang, A., and Xia, S.: Fracture toughness characterization of lithiated germanium as an anode material for lithium-ion batteries. J. Electrochem. Soc. 163, A90 (2016).
17.Gao, X., Luo, W., Zhong, C., Wexler, D., Chou, S-L., Liu, H-K., Shi, Z., Chen, G., Ozawa, K., and Wang, J-Z.: Novel germanium/polypyrrole composite for high power lithium-ion batteries. Sci. Rep. 4, 6095 (2014).
18.Graetz, J., Ahn, C.C., Yazami, R., and Fultz, B.: Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 151, A698 (2004).
19.Huggins, R.A. and Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57 (2000).
20.Chasiotis, I., Cho, S.W., and Jonnalagadda, K.: Fracture toughness and subcritical crack growth in polycrystalline silicon. J. Appl. Mech. 73, 714 (2005).
21.Zhao, K.: Mechanics of Electrodes in Lithium-Ion Batteries (Harvard University, Cambridge, MA, 2012).
22.Zhu, X-K. and Joyce, J.A.: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech. 85, 1 (2012).
23.Yonenaga, I.: Hardness, yield strength, and dislocation velocity in elemental and compound semiconductors. Mater. Trans. 46, 1979 (2005).
24.Yonenaga, I.: Growth and fundamental properties of SiGe bulk crystals. J. Cryst. Growth 275, 91 (2005).
25.Yonenaga, I.: Dislocation dynamics in SiGe alloys. J. Phys.: Conf. Ser. 471, 012002 (2013).
26.Mishra, K., Zheng, J., Patel, R., Estevez, L., Jia, H., Luo, L., El-Khoury, P.Z., Li, X., Zhou, X-D., and Zhang, J-G.: High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction. Electrochim. Acta 269, 509 (2018).
27.Ke, F-S., Mishra, K., Jamison, L., Peng, X-X., Ma, S-G., Huang, L., Sun, S-G., and Zhou, X-D.: Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries. Chem. Commun. 50, 3713 (2014).
28.Aubry, J.C., Tyliszczak, T., Hitchcock, A.P., Baribeau, J.M., and Jackman, T.E.: First-shell bond lengths in SixGe1−x crystalline alloys. Phys. Rev. B 59, 12872 (1999).
29.Martins, J.L. and Zunger, A.: Stability of ordered bulk and epitaxial semiconductor alloys. Phys. Rev. Lett. 56, 1400 (1986).
30.Tzoumanekas, C. and Kelires, P.C.: Theory of bond-length variations in relaxed, strained, and amorphous silicon–germanium alloys. Phys. Rev. B 66, 195209 (2002).
31.Yu, M., Jayanthi, C.S., Drabold, D.A., and Wu, S.Y.: Strain relaxation mechanisms and local structural changes in Si1−xGex alloys. Phys. Rev. B 64, 165205 (2001).
32.Wortman, J.J. and Evans, R.A.: Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).
33.Zhao, K., Pharr, M., Vlassak, J.J., and Suo, Z.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010).
34.Weker, J.N., Liu, N., Misra, S., Andrews, J.C., Cui, Y., and Toney, M.F.: In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. Energy Environ. Sci. 7, 2771 (2014).
35.Silberstein, K.E., Lowe, M.A., Richards, B., Gao, J., Hanrath, T., and Abruña, H.D.: Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries. Langmuir 31, 2028 (2015).
36.Misra, S., Liu, N., Nelson, J., Hong, S.S., Cui, Y., and Toney, M.F.: In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 6, 5465 (2012).
37.Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., and Huang, J.Y.: Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991 (2011).
38.Baggetto, L. and Notten, P.H.L.: Lithium-ion (de)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study. J. Electrochem. Soc. 156, A169 (2009).
39.Datta, M.K. and Kumta, P.N.: In situ electrochemical synthesis of lithiated silicon–carbon based composites anode materials for lithium ion batteries. J. Power Sources 194, 1043 (2009).
40.Zhang, J-G., Wang, W., Xiao, J., Xu, W., Graff, G.L., Yang, G., Choi, D., Wang, D., Li, X., and Liu, J.: Silicon-based anodes for Li-ion batteries. In Batteries for Sustainability: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Brodd, R.J., ed. (Springer, New York, 2013); p. 471.

Keywords

Type Description Title
WORD
Supplementary materials

Mishra et al. supplementary material 1
Mishra et al. supplementary material

 Word (3.8 MB)
3.8 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed