Skip to main content Accessibility help
×
Home

Study of orientation relationship between Al matrix and several typical inclusions in Al alloy by edge-to-edge matching model

  • Yu Liu (a1), Yuanchun Huang (a2) and Zhengbing Xiao (a2)

Abstract

The orientation relationship (OR) between Al matrix and several typical inclusions, Al2O3, MgO, AlN, TiB2, and AlB2, in Al alloy have been studied by edge-to-edge matching model and refined with Δg theory. Based on the calculation of interatomic spacing misfit and interplanar spacing misfit, the number of ORs between Al and Al2O3, MgO, AlN, TiB2, AlB2 were predicted to be 1, 7, 2, 2, and 2, respectively. The result reveals that the wettability of Al to the studied inclusions could rank as MgO, AlB2, TiB2, AlN, Al2O3 in the order of decreasing, and the removability of those particles from aluminum melt rank in an opposite way from the perspectives of crystallography features of interfacial energy. Moreover, Al2O3 have a higher sensitivity to the performance of a processed aluminum alloy component than other inclusions, and MgO has the minimal impact, when the studied inclusions were residual in aluminum alloy.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: science@csu.edu.cn

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

Footnotes

References

Hide All
1. Zhang, X., Liu, W., Liu, S., and Zhou, M.: Effect of processing parameters on quench sensitivity of an AA7050 sheet. Mater. Sci. Eng., A 528(3), 795802 (2011).
2. Yao, X., McDonald, S.D., Dahle, A.K., Davidson, C.J., and StJohn, D.H.: Modeling of grain refinement: Part III. Al–7 Si–0.3 Mg aluminum alloy. J. Mater. Res. 23(5), 13011306 (2008).
3. Yang, W., Ji, S., Wang, M., and Li, Z.: Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants. J. Alloys Compd. 610, 623629 (2014).
4. Wu, L-M., Wang, W-H., Hsu, Y-F., and Trong, S.: Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy. J. Alloys Compd. 456(1–2), 163169 (2008).
5. El-Soudani, S.M. and Pelloux, R.M.: A comparative analysis of automated and manual measurements of volume fraction of inclusions in aluminum-alloy rolled sheets. Metallography 6(1), 3764 (1973).
6. Mirgaux, O., Ablitzer, D., Waz, E., and Bellot, J.P.: Mathematical modeling, and computer simulation: Of molten aluminum purification by flotation in stirred reactor. Metall. Mater. Trans. B 40(3), 363375 (2009).
7. Zhang, L., Aoki, J., and Thomas, B.G.: Inclusion removal by bubble flotation in a continuous casting mold. Metall. Mater. Trans. B 37(3), 361379 (2006).
8. Xu, H., Jian, X., Meek, T.T., and Han, Q.: Degassing of molten aluminum A356 alloy using ultrasonic vibration. Mater. Lett. 58(29), 36693673 (2004).
9. Shahverdi, H.R., Ghomashchi, M.R., Shabestari, S., and Hejazi, J.: Microstructural analysis of interfacial reaction between molten aluminium and solid iron. J. Mater. Process. Technol. 124(3), 345352 (2002).
10. Liang, Q. and Reynolds, W.T.: Determining interphase boundary orientations from near-coincidence sites. Metall. Mater. Trans. A 29(8), 20592072 (1998).
11. Forwood, C.T. and Lawn, B.R.: Plastic deformation patterns on cleavage surfaces of lithium fluoride. Philos. Mag. 13(123), 595602 (1966).
12. Shiflet, G.J. and Merwe, J.H.: The role of structural ledges as misfit-compensating defects: fcc–bcc interphase boundaries. Metall. Mater. Trans. A 25(9), 18951903 (1994).
13. Russell, K.C., Hall, M.G., Kinsman, K.R., and Aaronson, H.I.: The nature of the barrier to growth at partially coherent FCC: BCC boundaries. Metall. Mater. Trans. B 5(6), 15031505 (1974).
14. Rigsbee, J.M. and Aaronson, H.I.: A computer modeling study of partially coherent f.c.c.:b.c.c. boundaries. Acta Metall. 27(3), 351363 (1979).
15. Weatherly, G.C. and Zhang, W.Z.: The invariant line and precipitate morphology in Fcc–Bcc systems. Metall. Mater. Trans. A 25(9), 18651874 (1994).
16. Luo, C.P., Dahmen, U., and Westmacott, K.H.: Morphology and crystallography of Cr precipitates in a Cu–0.33 wt% Cr alloy. Acta Metall. Mater. 42(6), 1923 (1994).
17. Luo, C.P. and Dahmen, U.: Interface structure of faceted lath-shaped Cr precipitates in a Cu–0.33 wt% Cr alloy. Acta Mater. 46(6), 20632081 (1998).
18. Fujii, T., Mori, T., and Kato, M.: Crystallography and morphology of needle-like α-Fe precipitate particles in a Cu matrix. Acta Metall. Mater. 40(12), 34133420 (1992).
19. Dahmen, U.: The role of the invariant line in the search for an optimum interphase boundary by O-lattice theory. Scr. Metall. 15(1), 7781 (1980).
20. Dahmen, U.: A comparison between three simple crystallographic principles of precipitate morphology. Metall. Mater. Trans. A 25(9), 18571863 (1994).
21. Dahmen, U.: Orientation relationships in precipitation systems. Acta Metall. 30(1), 6373 (1982).
22. Fonda, R.W. and Shiflet, G.J.: Analysis of the Cu-3 Wt pct Ti cellular interphase boundary by various models. Metall. Mater. Trans. A 33(8), 24952505 (2002).
23. Zhang, W.-Z. and Purdy, G.R.: O-lattice analyses of interfacial misfit. II. Systems containing invariant lines. Philos. Mag. A 68(2), 291303 (1993).
24. Gu, X.F. and Zhang, W.Z.: Analytical O-line solutions to phase transformation crystallography in fcc/bcc systems. Philos. Mag. 90(34), 45034527 (2010).
25. Zhang, W.Z. and Weatherly, G.C.: On the crystallography of precipitation. Prog. Mater. Sci. 50(2), 181292 (2005).
26. Zhang, M.X. and Kelly, P.M.: Edge-to-edge matching and its applications part I. Application to the simple HCP/BCC system. Acta Mater. 53(4), 10731084 (2005).
27. Kelly, P.M. and Zhang, M.X.: Edge-to-edge matching—the fundamentals. Metall. Mater. Trans. A 37(3), 833839 (2006).
28. Zhang, M.-X. and Kelly, P.: Edge-to-edge matching and its applications: Part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Mater. 53(4), 10851096 (2005).
29. Zhang, M.-X. and Kelly, P.: Edge-to-edge matching model for predicting orientation relationships and habit planes—the improvements. Scr. Mater. 52(10), 963968 (2005).
30. Zhang, M.X. and Kelly, P.M.: Edge-to-edge matching model for predicting orientation relationships and habit planes-the improvements. Scr. Mater. 52(10), 963968 (2005).
31. Zhang, M.X. and Kelly, P.M.: Edge-to-edge matching and its applications part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Mater. 53(4), 10851096 (2005).
32. Kelly, P. and Zhang, M.: Comments on edge-to-edge matching and the equivalence of the invariant line, Δg and Moire Fringe approaches to the crystallographic features of precipitates. Scr. Mater. 52(7), 679682 (2005).
33. Kelly, P. and Zhang, M.: Edge-to-edge matching–a new approach to the morphology and crystallography of precipitates. Mater. Forum 23, 4162 (1999).
34. Fu, H., Qiu, D., Zhang, M., Wang, H., Kelly, P., and Taylor, J.: The development of a new grain refiner for magnesium alloys using the edge-to-edge model. J. Alloys Compd. 456(1–2), 390394 (2008).
35. Zhang, M-X., Kelly, P., Easton, M., and Taylor, J.: Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater. 53(5), 14271438 (2005).
36. Zhang, M. and Kelly, P.: Understanding the crystallography of the eutectoid microstructure in a Zn–Al alloy using the edge-to-edge matching model. Scr. Mater. 55(7), 577580 (2006).
37. Zhang, M. and Kelly, P.: Application of edge-to-edge matching model to understand the in-plane texture of TiSi2 (C49) thin films on (001)Si surface. Scr. Mater. 55(7), 613616 (2006).
38. Birol, Y.: Survey of inclusions in twin roll casting of wrought aluminium alloys. Int. J. Cast Met. Res. 23(4), 250255 (2010).
39. Kondo, S., Tateishi, K., and Ishizawa, N.: Structural evolution of corundum at high temperatures. Jpn. J. App. Phys. 47(47), 616619 (2008).
40. Chen, X. and Kang, J.: The structural properties of wurtzite and rocksalt Mg x Zn1−x O. Semicond. Sci. Technol. 23(2), 025008 (2008).
41. Jiao, Z.Y., Ma, S.H., and Yang, J.F.: A comparison of the electronic and optical properties of zinc-blende, rocksalt and wurtzite AlN: A DFT study. Solid State Sci. 13(2), 331336 (2011).
42. Anishchik, V.M. and Dorozhkin, N.N.: Electronic structure of TiB2 and ZrB2 . Phys. Status Solidi 160(160), 173177 (1990).
43. Vinod Kumar, G.S., Murty, B.S., and Chakraborty, M.: Settling behaviour of TiAl3, TiB2, TiC and AlB2 particles in liquid Al during grain refinement. Int. J. Cast Met. Res. 23(4), 193204 (2010).
44. Kelly, P.M., Ren, H.P., Qiu, D., and Zhang, M.X.: Identifying close-packed planes in complex crystal structures. Acta Mater. 58(8), 30913095 (2010).
45. Zhang, M-X., Chen, S-Q., Ren, H-P., and Kelly, P.: Crystallography of the simple HCP/FCC system. Metall. Mater. Trans. A 39(5), 10771086 (2008).
46. Ouyang, L. and Luo, C.: Crystallographic orientation relationship between a Al2O3 and Al in in situ Al2O3 reinforced Al–4Mg matrix composites. Acta Metall. Sin. 41(7), 750754 (2005).
47. Pilania, G., Thijsse, B.J., Hoagland, R.G., Lazić, I., Valone, S.M., and Liu, X.Y.: Revisiting the Al/Al2O3 interface: Coherent interfaces and misfit accommodation. Sci. Rep. 4(3), 4485 (2014).
48. Yang, L., Xia, M., Babu, N.H., and Li, J.: Formation of MgAl2O4 at Al/MgO interface. Mater. Trans. 56(3), 277280 (2015).
49. Ye, C., Ning, Z., Wang, X.D., Huang, B.X., and Rong, Y.H.. An edge-to-edge matching model and its application to the HCP/FCC system. J. Shanghai Jiaotong Univ. 41(4), 586591 (2007).
50. Yang, J., Wang, J.L., Wu, Y.M., Wang, L.M., and Zhang, H.J.: Extended application of edge-to-edge matching model to HCP/HCP (alpha-Mg/MgZn2) system in magnesium alloys. Mater. Sci. Eng., A 460(14), 296300 (2007).

Keywords

Study of orientation relationship between Al matrix and several typical inclusions in Al alloy by edge-to-edge matching model

  • Yu Liu (a1), Yuanchun Huang (a2) and Zhengbing Xiao (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed