Skip to main content Accessibility help

Structure transition, formation, and optical absorption property study of Ag/SiO2 nanofilm by sol–gel method

  • Yan Li (a1), Bo-Ping Zhang (a1), Cui-Hua Zhao (a2) and Jin-Xian Zhao (a3)


Ag nanoparticles dispersed SiO2 composite films were successfully prepared by a sol–gel method. The structural transition, formation, and optical property along with relevant band gap of Ag/SiO2 thin films during the annealing process were studied by Fourier transform infrared spectroscopy, thermogravimetry–differential thermal analysis, x-ray diffraction, and ultraviolet–visible spectroscopy, while the microstructure of thin films was revealed by transmission electron microscopy. The results indicate that the Ag spherical particles with the diameter of 10–20 nm were formed by breaking Si–O–Ag bonds above 200 °C and dispersed in the SiO2 matrix. The optical absorption property of Ag/SiO2 nanofilm in the visible range is enhanced, and the band gap (Eg) is widened with raising annealing temperatures, which is promising for the potential applications in nonlinear optical and related fields.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).
2.Sella, C., Chenot, S., Reillon, V., and Berthier, S.: Influence of the deposition conditions on the optical absorption of Ag-SiO2 nanocermet thin films. Thin Solid Films 517, 5848 (2009).
3.Kreibig, U. and Genzel, L.: Optical absorption of small metallic particles. Surf. Sci. 156, 678 (1985).
4.Persson, B.J.: Surface resistivity and vibrational damping in adsorbed layers. Phys. Rev. B 44, 3277 (1991).
5.Stucky, G.D. and Mac Dougall, J.E.: Quantum confinement and host/guest chemistry: Probing a new dimension. Science 247(4943), 669 (1990).
6.Scalisi, A.A., Compagnini, G., D’Urso, L., and Puglisi, O.: Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration. Appl. Surf. Sci. 226, 237 (2004).
7.Guo, L., Guan, A., Lin, X., Zhang, C., and Chen, G.: Preparation of a new core-shell Ag@SiO2 nanocomposite and its application for fluorescence enhancement. Talanta 82, 1696 (2010).
8.Gangopadhyay, P., Kesavamoorthy, R., Nair, K.G.M., and Dhandapani, R.: Raman scattering studies on silver nanoclusters in a silica matrix formed by ion-beam mixing. J. Appl. Phys. 88(9), 4975 (2000).
9.Liu, Z.X., Li, H., Feng, X.D., Ren, S.G., and Wang, H.H.: Formation effects and optical absorption of Ag nanocrystals embedded in single crystal SiO2 by implantation. J. Appl. Phys. 84(4), 1913 (1998).
10.Yang, L., Liu, Y.L., Wang, Q.M., Shi, H.Z., Li, G.H., and Zhang, L.D.: The plasmon resonance absorption of Ag/SiO2 nanocomposite films. Microelectron. Eng. 66, 192 (2003).
11.Tanahashi, I., Yoshida, M., Manabe, Y., and Tohda, T.: Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films. J. Mater. Res. 10, 362 (1995).
12.Babapour, A., Akhavan, O., Moshfegh, A.Z., and Hosseini, A.A.: Size variation and optical absorption of sol-gel Ag nanoparticles doped SiO2 thin film. Thin Solid Films 515, 771 (2006).
13.Jiao, L.S., Zhang, B.P., Ding, X.Z., Chen, C., and Zhang, H.L.: Sol-gel preparation of Ag/SiO2 nano-composite films and their optical absorption properties. Rare Met. Mater. Eng. 36, 882 (2007).
14.Chatterjee, M. and Naskar, M.K.: Sol-gel synthesis of lithium aluminum silicate powders: The effect of silica source. Ceram. Int. 32, 623 (2006).
15.Monsivais-Gámez, E., Ruiz, F., and Martínez, J.R.: Four-membered rings family in the Si–O extended rocking IR band from quantum chemistry calculations. J. Sol-Gel Sci. Technol. 43(1), 65 (2007).
16.Parashar, V.K., Raman, V., and Bahl, O.P.: The role of N,N,dimethylformamide and glycol in the preparation and properties of sol-gel derived silica. J. Mater. Sci. Lett. 15(16), 1403 (1996).
17.Stefanescu, M., Stoia, M., and Stefanescu, O.: Thermal and FT-IR study of the hybrid ethylene-glycol–silica matrix. J. Sol-Gel Sci. Technol. 41(1), 71 (2007).
18.Que, W.X., Zhou, Y., Lam, Y.L., Chan, Y.C., Tan, H.T., Tan, T.H., and Kam, C.H.: Sol-gel processed silica/titania/y-glycidoxypropyltrimethoxysilane composite materials for photonic applications. J. Electron. Mater. 29(8), 1052 (2000).
19.Colthup, N.B., Daly, L.H., and Wiberiey, S.E.: Introduction to Infrared and Raman Spectroscopy, 2nd ed (Academic Press, New York, 1975).
20.Soderlund, J., Kiss, L.B., Niklasson, G.A., and Granqvist, C.G.: Lognormal size distributions in particle growth processes without coagulation. Phys. Rev. Lett. 80(11), 2386 (1998).
21.Karmakar, B., De, G., and Ganguli, D.: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J. Non-Cryst. Solids 272(40239), 119 (2000).
22.De, G., Karmakar, B., and Ganguli, D.: Hydrolysis-condensation reactions of TEOS in presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. J. Mater. Chem. 10, 2289 (2000).
23.De, G., Kundu, D., Karmakar, B., and Ganguli, D.: FTIR studies of gel to glass conversion in TEOS-fumed silica derived gels, J. Non-Cryst. Solids 155, 253 (1993).
24.Jeon, H.J., Yi, S.C., and Oh, S.G.: Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials 24, 4921 (2003).
25.Wang, J., Zhang, C.R., and Feng, J.: Modification of nanoporous silica film by trimethylchlorosilane. Acta Phys. Chim. Sin. 20, 1399 (2004).
26.Innocenzi, P.: Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non-Cryst. Solids 316(2–3), 309 (2003).
27.Martinez, J.R., Ruiz, F., Vorobiev, Y.V., Pérez-Robles, F., and González-Hernández, J.: Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel. J. Chem. Phys. 109(17), 7511 (1998).
28.Parler Caroline, M., Ritter James, A., and Amiridis Michael, D.: Infrared spectroscopic study of sol-gel derived mixed-metal oxides, J. Non-Cryst. Solids 279(2–3), 119 (2001).
29.Niznansky, D. and Rehspringer, J.L.: Infrared study of SiO2 sol to gel evolution and gel aging. J. Non-Cryst. Solids 180, 191 (1995).
30.Yamane, M.: in Sol-Gel Technology for Thin Films, edited by Klein, L.C. (Noyes Publications, New Jersey, 1989).
31.Perry, C.C., Li, X., and Waters, D.N.: Structural studies of gel phases. 4. An infrared reflectance and Fourier-transform Raman-study of silica and silica titania gel glasses. Spectrochim. Acta 47, 1487 (1991).
32.Lan, L., Gnappi, G., and Montenero, A.: Infrared study of EPOXS-TEOS-TPOT gels. J. Mater. Sci. 28, 2119 (1993).
33.Zhao, C.H., Zhang, B.P., and Shang, P.P.: Enhanced nonlinear optical absorption of Au/SiO2 nano composite thin films. Chin. Phys. B 18, 5539 (2009).
34.Piękoś, R., Wesołowski, M., and Teodorczyk, J.: Thermal analysis of some pharmaceutically relevant systems obtained by sol-gel technique. J. Therm. Anal. Calorim. 70, 447 (2002).
35.Allen, L.H. and Matijevic, E.: Stability of colloidal silica: III. Effect of hydrolyzable cations. Interface Sci. 35, 66 (1971).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed