Skip to main content Accessibility help

Structure, electrical, and thermal expansion properties of (La0.8Ca0.2)(Cr0.9–xCo0.1Nix)O3–δ interconnect materials for intermediate temperature solid oxide fuel cells

  • Yen-Pei Fu (a1) and Hsin-Chao Wang (a1)


The microstructure, lattice parameters, electrical conductivity, thermal expansion, and mechanical properties of (La0.8Ca0.2)(Cr0.9–xCo0.1Nix)O3–δ (x = 0.03, 0.06, 0.09, 0.12) were systematically investigated in this work. Nickel doping of (La0.8Ca0.2)(Cr0.9Co0.1)O3–δ is an effective way of increasing the thermal expansion coefficient (TEC) and stabilizing the high-temperature phase transformation from rhombohedral to tetragonal. As the nickel-doped content increases, the TEC increases parabolically by TEC (x) (ppm/°C) = 10.575 + 63.3x−240x2 (x = 0.03−0.12). The electrical conductivity of (La0.8Ca0.2)(Cr0.9–xCo0.1Nix)O3–δ specimens increases systematically with increasing nickel substitution in the range of 0.03 ≤ x ≤ 0.09 and reaches a maximum for the composition of (La0.8Ca0.2)(Cr0.81Co0.1Ni0.09)O3–δ850 °C ∼60.36 S/cm). There is a slight increase in the fracture toughness with increasing nickel doping content, and the fracture toughness is strongly affected by the grain size. It seems that there is an increase in the fracture toughness with decreasing grain size. However, the microhardness does not significantly depend on the grain size in this study. The (La0.8Ca0.2)(Cr0.81Co0.1Ni0.09)O3–δ specimen shows high electrical conductivity, a moderate thermal expansion coefficient, and nearly linear thermal expansion behavior from room temperature to 800 °C. It will be suitable for interconnect materials for intermediate temperature solid oxide fuel cells (IT-SOFCs).


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Fergus, J.W.: Lanthanum chromite-based materials for solid oxide fuel cells interconnects. Solid State Ionics 171, 1 (2004).
2.Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).
3.Minh, N.Q.: Solid oxide fuel cells, in Materials, Fabrication Process and Development Trends, edited by Badwal, S.P.S., Bannister, M.J., and Hannink, R.H.J. (Science and Technology of Zirconia V, Technomic Publishing, Lancaster, PA, 1993), p. 652.
4.Steele, B.C.H.: Materials for IT-SOFC stacks 35 years R&D: The inevitability of gradualness. Solid State Ionics 134, 3 (2000).
5.Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).
6.Yokokawa, H., Sakai, N., Horita, T., and Yamaji, K.: Recent developments in solid-oxide fuel-cell materials. Fuel Cells 1, 117 (2001).
7.Badwal, S.P.S.: Stability of solid oxide fuel cell components. Solid State Ionics 143, 39 (2001).
8.Badwal, S.P.S. and Foger, K.: Materials for solid oxide fuel cells. Mater. Forum 21, 187 (1997).
9.Tietz, F.: Materials selection for solid oxide fuel cells. Mater. Sci. Forum 426–432, 4465 (2003).
10.Yang, Z., Weil, K.S., Paxton, D.M., and Stevenson, J.W.: Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J. Electrochem. Soc. 150, A1188 (2003).
11.Zhu, W.Z. and Deevi, S.C.: Development of interconnect materials for solid state fuel cells. Mater. Sci. Eng., A 348, 227 (2003).
12.Minh, N.Q. and Takahashi, T.: Science and Technology of Ceramic Fuel Cells, 1st ed. (Elsevier, Amsterdam, Netherlands, 1995), p. 198.
13.Chakraborty, A., Basu, R.N., and Maiti, H.S.: Low temperature sintering of La(Ca)CrO3 prepared by an autoignition process. Mater. Lett. 45, 162 (2000).
14.Rivas-Vazquez, L.P., Rendon-Angeles, J.C., Rodriguez-Galicia, J.L., Gutierrez-Chavarria, C.A., Zhu, K.J., and Yanagisawa, K.: Preparation of calcium doped LaCrO3 fine powders by hydrothermal method and its sintering. J. Eur. Ceram. Soc. 26, 81 (2006).
15.Ghosh, S., Sharma, A.D., Basu, R.N., and Maiti, H.S.: Influence of B site substitutions on lanthanum calcium chromite nanocrystal-line materials for a solid-oxide fuel cell. J. Am. Ceram. Soc. 90, 3741 (2007).
16.Mori, M. and Sammes, N.M.: Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by Pechini method. Solid State Ionics 146, 301 (2002).
17.Mori, M., Hiei, Y., and Yamamoto, T.: Control of the thermal expansion of strontium doped lanthanum chromite perovskites by B-site doping for high temperature solid oxide fuel cell separators., J. Am. Ceram. Soc. 84, 781 (2001).
18.Weber, W.J., Griffin, C.W., and Bates, J.L.: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).
19.Ding, X., Liu, Y., Gao, L., and Guo, L.: Effect of cation substitution on thermal expansion and electrical properties of lanthanum chro-mites. J. Alloys Compd. 425, 318 (2006).
20.Atkinson, A. and Selcuk, A.: Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics 134, 59 (2000).
21.Sakai, N., Yokokawa, H., Horita, T., and Yamaji, K.: Lanthanum chromite-based interconnects as key materials for SOFC stacks development. Int. J. Appl. Ceram. Technol. 1, 23 (2004).
22.Tian, C. and Chan, S.W.: Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3. Solid State Ionics 134, 89 (2000).
23.He, Y.J., Winnubst, A.J.A., Sagel-Ransijn, C.D., Burggraaf, A.J., and Verweij, H.: Enhanced mechanical properties by grain boundary strengthening in ultra-fine-grained TZP ceramics. J. Eur. Ceram. Soc. 16, 601 (1996).
24.Sullivan, J.D. and Lauzon, P.H.: Experimental probability estimators for Weibull plots. J. Mater. Sci. Lett. 5, 1245 (1986).
25.Austin, I.G. and Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969).
26.Kim, J.H., Peck, D.H., Song, R.H., Lee, G.Y., Shin, D.R., Hyun, S.H., Wackerl, J., and Hilpert, K.: Synthesis and sintering properties of (La0.8Ca0.2−xSrx)CrO3 perovskite materials for SOFC interconnect. J. Electroceram. 17, 729 (2006).
27.Paulik, S.W., Baskaran, S., and Armstromg, T.R.: Mechanical properties of calcium- and strontium-substituted lanthanum chromite. J. Math. Sci. 33, 2397 (1998).
28.Corbel, G., Mestiri, S., and Lacorre, P.: Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor. Solid State Sci. 7, 1216 (2005).
29.Skarmoutsos, D., Tsoga, A., Naoumidis, A., and Nikolopoulos, P.: 5 mol% TiO2-doped Ni–YSZ anode cermets for solid oxide fuel cells. Solid State Ionics 135, 439 (2000).
30.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).
31.Poton, B.C. and Rawling, R.D.: Vickers indentation fracture toughness test. Part 1. Review of literature and formulation of standard indentation toughness equations. Mater. Sci. Technol. 5, 865 (1989).
32.Ma, J., Zhang, T.S., Kong, L.B., Hing, P., Leng, Y.J., and Chan, S.H.: Preparation and characterization of dense Ce0.8Y0.15O2−δ ceramics. J. Eur. Ceram. Soc. 24, 2641 (2004).
33.Tai, L.W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R.: Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ionics 76, 273 (1995).
34.Mori, M., Sammes, N.M., Suda, E., and Takeda, Y.: Application of La0.6AE0.4MnO3 (AE = Ca and Sr) to electric current collectors in high-temperature solid oxide fuel cells. Solid State Ionics 164, 1 (2003).
35.Petric, A., Huang, P., and Tietz, F.: Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135, 719 (2000).
36.Kharton, V.V., Figueiredo, F.M., Navarro, L., Naumovich, E.N., Kovalevsky, A.V., Yaremchenko, A.A., Viskup, A.P., Carneiro, A., Marques, F.M.B., and Frade, J.R.: Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105 (2001).


Structure, electrical, and thermal expansion properties of (La0.8Ca0.2)(Cr0.9–xCo0.1Nix)O3–δ interconnect materials for intermediate temperature solid oxide fuel cells

  • Yen-Pei Fu (a1) and Hsin-Chao Wang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed