Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T12:01:12.680Z Has data issue: false hasContentIssue false

Structure, electrical, and thermal expansion properties of (La0.8Ca0.2)(Cr0.9–xCo0.1Nix)O3–δ interconnect materials for intermediate temperature solid oxide fuel cells

Published online by Cambridge University Press:  31 January 2011

Yen-Pei Fu*
Affiliation:
Department of Materials Science and Engineering, National Dong-Hwa University, Shou-Feng, Hualien 974, Taiwan
Hsin-Chao Wang
Affiliation:
Department of Materials Science and Engineering, National Dong-Hwa University, Shou-Feng, Hualien 974, Taiwan
*
a) Address all correspondence to this author. e-mail: d887503@alumni.nthu.edu.tw
Get access

Abstract

The microstructure, lattice parameters, electrical conductivity, thermal expansion, and mechanical properties of (La0.8Ca0.2)(Cr0.9–xCo0.1Nix)O3–δ (x = 0.03, 0.06, 0.09, 0.12) were systematically investigated in this work. Nickel doping of (La0.8Ca0.2)(Cr0.9Co0.1)O3–δ is an effective way of increasing the thermal expansion coefficient (TEC) and stabilizing the high-temperature phase transformation from rhombohedral to tetragonal. As the nickel-doped content increases, the TEC increases parabolically by TEC (x) (ppm/°C) = 10.575 + 63.3x−240x2 (x = 0.03−0.12). The electrical conductivity of (La0.8Ca0.2)(Cr0.9–xCo0.1Nix)O3–δ specimens increases systematically with increasing nickel substitution in the range of 0.03 ≤ x ≤ 0.09 and reaches a maximum for the composition of (La0.8Ca0.2)(Cr0.81Co0.1Ni0.09)O3–δ850 °C ∼60.36 S/cm). There is a slight increase in the fracture toughness with increasing nickel doping content, and the fracture toughness is strongly affected by the grain size. It seems that there is an increase in the fracture toughness with decreasing grain size. However, the microhardness does not significantly depend on the grain size in this study. The (La0.8Ca0.2)(Cr0.81Co0.1Ni0.09)O3–δ specimen shows high electrical conductivity, a moderate thermal expansion coefficient, and nearly linear thermal expansion behavior from room temperature to 800 °C. It will be suitable for interconnect materials for intermediate temperature solid oxide fuel cells (IT-SOFCs).

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fergus, J.W.: Lanthanum chromite-based materials for solid oxide fuel cells interconnects. Solid State Ionics 171, 1 (2004).CrossRefGoogle Scholar
2.Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
3.Minh, N.Q.: Solid oxide fuel cells, in Materials, Fabrication Process and Development Trends, edited by Badwal, S.P.S., Bannister, M.J., and Hannink, R.H.J. (Science and Technology of Zirconia V, Technomic Publishing, Lancaster, PA, 1993), p. 652.Google Scholar
4.Steele, B.C.H.: Materials for IT-SOFC stacks 35 years R&D: The inevitability of gradualness. Solid State Ionics 134, 3 (2000).CrossRefGoogle Scholar
5.Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).CrossRefGoogle ScholarPubMed
6.Yokokawa, H., Sakai, N., Horita, T., and Yamaji, K.: Recent developments in solid-oxide fuel-cell materials. Fuel Cells 1, 117 (2001).3.0.CO;2-Y>CrossRefGoogle Scholar
7.Badwal, S.P.S.: Stability of solid oxide fuel cell components. Solid State Ionics 143, 39 (2001).CrossRefGoogle Scholar
8.Badwal, S.P.S. and Foger, K.: Materials for solid oxide fuel cells. Mater. Forum 21, 187 (1997).Google Scholar
9.Tietz, F.: Materials selection for solid oxide fuel cells. Mater. Sci. Forum 426–432, 4465 (2003).CrossRefGoogle Scholar
10.Yang, Z., Weil, K.S., Paxton, D.M., and Stevenson, J.W.: Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J. Electrochem. Soc. 150, A1188 (2003).CrossRefGoogle Scholar
11.Zhu, W.Z. and Deevi, S.C.: Development of interconnect materials for solid state fuel cells. Mater. Sci. Eng., A 348, 227 (2003).CrossRefGoogle Scholar
12.Minh, N.Q. and Takahashi, T.: Science and Technology of Ceramic Fuel Cells, 1st ed. (Elsevier, Amsterdam, Netherlands, 1995), p. 198.Google Scholar
13.Chakraborty, A., Basu, R.N., and Maiti, H.S.: Low temperature sintering of La(Ca)CrO3 prepared by an autoignition process. Mater. Lett. 45, 162 (2000).CrossRefGoogle Scholar
14.Rivas-Vazquez, L.P., Rendon-Angeles, J.C., Rodriguez-Galicia, J.L., Gutierrez-Chavarria, C.A., Zhu, K.J., and Yanagisawa, K.: Preparation of calcium doped LaCrO3 fine powders by hydrothermal method and its sintering. J. Eur. Ceram. Soc. 26, 81 (2006).CrossRefGoogle Scholar
15.Ghosh, S., Sharma, A.D., Basu, R.N., and Maiti, H.S.: Influence of B site substitutions on lanthanum calcium chromite nanocrystal-line materials for a solid-oxide fuel cell. J. Am. Ceram. Soc. 90, 3741 (2007).CrossRefGoogle Scholar
16.Mori, M. and Sammes, N.M.: Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by Pechini method. Solid State Ionics 146, 301 (2002).CrossRefGoogle Scholar
17.Mori, M., Hiei, Y., and Yamamoto, T.: Control of the thermal expansion of strontium doped lanthanum chromite perovskites by B-site doping for high temperature solid oxide fuel cell separators., J. Am. Ceram. Soc. 84, 781 (2001).CrossRefGoogle Scholar
18.Weber, W.J., Griffin, C.W., and Bates, J.L.: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).CrossRefGoogle Scholar
19.Ding, X., Liu, Y., Gao, L., and Guo, L.: Effect of cation substitution on thermal expansion and electrical properties of lanthanum chro-mites. J. Alloys Compd. 425, 318 (2006).CrossRefGoogle Scholar
20.Atkinson, A. and Selcuk, A.: Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics 134, 59 (2000).CrossRefGoogle Scholar
21.Sakai, N., Yokokawa, H., Horita, T., and Yamaji, K.: Lanthanum chromite-based interconnects as key materials for SOFC stacks development. Int. J. Appl. Ceram. Technol. 1, 23 (2004).CrossRefGoogle Scholar
22.Tian, C. and Chan, S.W.: Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3. Solid State Ionics 134, 89 (2000).CrossRefGoogle Scholar
23.He, Y.J., Winnubst, A.J.A., Sagel-Ransijn, C.D., Burggraaf, A.J., and Verweij, H.: Enhanced mechanical properties by grain boundary strengthening in ultra-fine-grained TZP ceramics. J. Eur. Ceram. Soc. 16, 601 (1996).CrossRefGoogle Scholar
24.Sullivan, J.D. and Lauzon, P.H.: Experimental probability estimators for Weibull plots. J. Mater. Sci. Lett. 5, 1245 (1986).CrossRefGoogle Scholar
25.Austin, I.G. and Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
26.Kim, J.H., Peck, D.H., Song, R.H., Lee, G.Y., Shin, D.R., Hyun, S.H., Wackerl, J., and Hilpert, K.: Synthesis and sintering properties of (La0.8Ca0.2−xSrx)CrO3 perovskite materials for SOFC interconnect. J. Electroceram. 17, 729 (2006).CrossRefGoogle Scholar
27.Paulik, S.W., Baskaran, S., and Armstromg, T.R.: Mechanical properties of calcium- and strontium-substituted lanthanum chromite. J. Math. Sci. 33, 2397 (1998).CrossRefGoogle Scholar
28.Corbel, G., Mestiri, S., and Lacorre, P.: Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor. Solid State Sci. 7, 1216 (2005).CrossRefGoogle Scholar
29.Skarmoutsos, D., Tsoga, A., Naoumidis, A., and Nikolopoulos, P.: 5 mol% TiO2-doped Ni–YSZ anode cermets for solid oxide fuel cells. Solid State Ionics 135, 439 (2000).CrossRefGoogle Scholar
30.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
31.Poton, B.C. and Rawling, R.D.: Vickers indentation fracture toughness test. Part 1. Review of literature and formulation of standard indentation toughness equations. Mater. Sci. Technol. 5, 865 (1989).CrossRefGoogle Scholar
32.Ma, J., Zhang, T.S., Kong, L.B., Hing, P., Leng, Y.J., and Chan, S.H.: Preparation and characterization of dense Ce0.8Y0.15O2−δ ceramics. J. Eur. Ceram. Soc. 24, 2641 (2004).CrossRefGoogle Scholar
33.Tai, L.W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R.: Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ionics 76, 273 (1995).CrossRefGoogle Scholar
34.Mori, M., Sammes, N.M., Suda, E., and Takeda, Y.: Application of La0.6AE0.4MnO3 (AE = Ca and Sr) to electric current collectors in high-temperature solid oxide fuel cells. Solid State Ionics 164, 1 (2003).CrossRefGoogle Scholar
35.Petric, A., Huang, P., and Tietz, F.: Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135, 719 (2000).CrossRefGoogle Scholar
36.Kharton, V.V., Figueiredo, F.M., Navarro, L., Naumovich, E.N., Kovalevsky, A.V., Yaremchenko, A.A., Viskup, A.P., Carneiro, A., Marques, F.M.B., and Frade, J.R.: Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105 (2001).CrossRefGoogle Scholar