Skip to main content Accessibility help
×
Home

Structure and temperature-dependent phase transitions of lead-free Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–K0.5Na0.5NbO3 piezoceramics

  • Eva-Maria Anton (a1), Ljubomira Ana Schmitt (a2), Manuel Hinterstein (a3), Joe Trodahl (a4), Ben Kowalski (a5), Wook Jo (a6), Hans-Joachim Kleebe (a7), Jürgen Rödel (a8) and Jacob L. Jones (a9)...

Abstract

Structure and phase transitions of (1 − y)((1 − x)Bi1/2Na1/2TiO3xBi1/2K1/2TiO3)–yK0.5Na0.5NbO3 (x; y) piezoceramics (0.1 ≤ x ≤ 0.4; 0 ≤ y ≤ 0.05) were investigated by transmission electron microscopy, neutron diffraction, temperature-dependent x-ray diffraction, and Raman spectroscopy. The local crystallographic structure at room temperature (RT) does not change by adding K0.5Na0.5NbO3 to Bi1/2Na1/2TiO3xBi1/2K1/2TiO3 for x = 0.2 and 0.4. The average crystal structure and microstructure on the other hand develop from mainly long-range polar order with ferroelectric domains to short-range order with polar nanoregions displaying a more pronounced relaxor character. The (0.1; 0) and (0.1; 0.02) compositions exhibit monoclinic Cc space group symmetry, which transform into Cc + P4bm at 185 and 130 °C, respectively. This high temperature phase is stable at RT for the morphotropic phase boundary compositions of (0.1; 0.05) and all compositions with x = 0.2. For the compositions of (0.1; 0) and (0.1; 0.02), local structural changes on heating are evidenced by Raman; for all other compositions, changes in the long-range average crystal structure were observed.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: anton@ceramics.tu-darmstadt.de

References

Hide All
1.Rödel, J., Jo, W., Seifert, K.T.P., Anton, E-M., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).
2.Takenaka, T., Nagata, H., and Hiruma, Y.: Current developments and prospective of lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 47, 3787 (2008).
3.Aksel, E. and Jones, J.L.: Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10, 1935 (2010).
4.Jaffe, B., Cook, W.R., and Jaffe, H., editors: Piezoelectric Ceramics (Academic Press, London, 1971).
5.Kounga, A.B., Zhang, S-T., Jo, W., Granzow, T., and Rödel, J.: Morphotropic phase boundary in (1-x)Bi0.5Na0.5TiO3-xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 92, 222902 (2008).
6.Takenaka, T., Maruyama, K., and Sakata, K.: (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys., Part 1 30, 2236 (1991).
7.Elkechai, O., Manier, M., and Mercurio, J.P.: Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 (NBT-KBT) system: A structural and electrical study. Phys. Status Solidi A 157, 499 (1996).
8.Sasaki, A., Chiba, T., Mamiya, Y., and Otsuki, E.: Dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys., Part 1 38, 5564 (1999).
9.Nagata, H., Yoshida, M., Makiuchi, Y., and Takenaka, T.: Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys., Part 1 42, 7401 (2003).
10.Zhang, S-T., Kounga, A.B., Aulbach, E., Ehrenberg, H., and Rödel, J.: Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).
11.Seifert, K.T.P., Jo, W., and Rödel, J.: Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc. 93, 1392 (2010).
12.Singh, A. and Chatterjee, R.: Structural, electrical, and strain properties of stoichiometric 1-x - y(Bi0.5Na0.5)TiO3 - x(Bi0.5K0.5TiO3) - y(Na0.5K0.5)NbO3 solid solutions. J. Appl. Phys. 109, 024105 (2011).
13.Anton, E-M., Jo, W., Trodahl, J., Damjanovic, D., and Rödel, J.: Effect of K0.5Na0.5NbO3 on properties at and off the morphotropic phase boundary in Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3 ceramics. Jpn. J. Appl. Phys. 50, 055802 (2011).
14.Jones, G.O., Kreisel, J., and Thomas, P.A.: A structural study of the (Na1-xKx)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature. Powder Diffr. 17, 301 (2002).
15.Glazer, A.M.: Classification of tilted octahedra in perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 28, 3384 (1972).
16.Zhao, W., Zhou, H.P., Yan, Y.K., and Liu, D.: Morphotropic phase boundary study of the BNT-BKT lead-free piezoelectric ceramics. Key Eng. Mater. 368372, 1908 (2008).
17.Yang, Z., Liu, B., Wei, L., and Hou, Y.: Structure and electrical properties of (1-x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater. Res. Bull. 43, 81 (2008).
18.Otonicar, M., Skapin, S.D., Spreitzer, M., and Suvorov, D.: Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system. J. Eur. Ceram. Soc. 30, 971 (2010).
19.Tai, C.W., Choy, S.H., and Chan, H.L.W.: Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 ceramics at different temperatures. J. Am. Ceram. Soc. 91, 3335 (2008).
20.Tai, C.W. and Lereah, Y.: Nanoscale oxygen octahedral tilting in 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-0.05BaTiO3 lead-free perovskite piezoelectric ceramics. Appl. Phys. Lett. 95, 062901 (2009).
21.Otonicar, M., Skapin, S.D., and Jancar, B.: TEM analyses of the local crystal and domain structures in (Na1-xKx)0.5Bi0.5TiO3 perovskite ceramics. IEEE Trans. Ultrason., Ferroelectr. Freq. Control 58, 1928 (2011).
22.Woodward, D.I. and Reaney, I.M.: Electron diffraction of tilted perovskites. Acta Crystallogr., Sect. B: Struct. Sci. B61, 387 (2005).
23.Gorfman, S. and Thomas, P.A.: Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3. J. Appl. Crystallogr. 43, 1409 (2010).
24.Aksel, E., Forrester, J.S., Jones, J.L., Thomas, P.A., Page, K., and Suchomel, M.R.: Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3. Appl. Phys. Lett. 98, 152901 (2011).
25.Levin, I., Reaney, I.M., Anton, E.-M., Jo, W., Rödel, J., Pokorny, J., Schmitt, L.A., Kleebe, H.-J., Hinterstein, M., Trodahl, J., and Jones, J.L.: Local Structure, Pseudo-Symmetry, and Phase Transitions in Na1/2Bi1/2TiO3-K1/2Bi1/2TiO3 Ceramics. Phys. Rev. B (2012, submitted).
26.Yao, Z.H., Liu, H.X., Chen, L., and Cao, M.H.: Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)1-x(Bi1/2K1/2)xTiO3-0.03(Na0.5K0.5)NbO3 ferroelectric ceramics. Mater. Lett. 63, 547 (2009).
27.Jo, W., Daniels, J.E., Jones, J.L., Tan, X., Thomas, P.A., Damjanovic, D., and Rödel, J.: Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J. Appl. Phys. 109, 014110 (2011).
28.Wylie-van Eerd, B., Damjanovic, D., Klein, N., Setter, N., and Trodahl, J.: Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys. Rev. B 82, 104112 (2010).
29.Miehe, G.: Program for Interpreting Electron Diffraction Patterns (PIEP). Version 7.12 (Institute for Materials Science, Technische Universität Darmstadt, Germany, 2002).
30.Roisnel, T. and Rodriguez-Carvajal, J.: WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 378381, 118 (2001).
31.Fousek, J. and Janovec, V.: The orientation of domain walls in twinned ferroelectric crystals. Phys. Rev. B 40, 135 (1969).
32.Dai, X.H., Xu, Z., Li, J.F., and Viehland, D.: Effects of lanthanum modification on rhombohedral Pb(Zr1-xTix)O3 ceramics .1. Transformation from normal to relaxor ferroelectric behaviors. J. Mater. Res. 11, 618 (1996).
33.Honjo, G., Kodera, S., and Kitamura, N.: Diffuse streak diffraction patterns from single crystals. I. General discussion and aspects of electron diffraction diffuse streak patterns. J. Phys. Soc. Jpn. 19, 351 (1964).
34.Welberry, T.R.: Diffuse X-Ray Scattering and Models of Disorder (Oxford University Press, New York, 2004).
35.Daniels, J.E., Jo, W., Rodel, J., Rytz, D., and Donner, W.: Structural origins of relaxor behavior in a 0.96(Bi1/2Na1/2)TiO3-0.04BaTiO3 single crystal under electric field. Appl. Phys. Lett. 98, 252904 (2011).
36.Jeong, I., Park, C.Y., Kim, D.J., Kim, S-h., Moon, B.K., Kim, I.W., and Ahn, C.W.: Neutron total scattering studies on A-site disorder in lead-free ferroelectric Bi0.5(Na1–xKx)0.5TiO3. Z. Kristallogr. 226, 150 (2011).
37.Aksel, E., Forrester, J.S., Kowalski, B., Jones, J.L., and Thomas, P.A.: Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction. Appl. Phys. Lett. 99, 222901 (2011).
38.Xie, H.D., Jin, L., Shen, D.Z., Wang, X.Q., and Shen, G.Q.: Morphotropic phase boundary, segregation effect and crystal growth in the NBT-KBT system. J. Cryst. Growth 311, 3626 (2009).
39.Aksel, E., Forrester, J.S., Kowalski, B., Deluca, M., Damjanovic, D., and Jones, J.L.: Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature. Phys. Rev. B 85, (2012).
40.Anton, E-M., Jo, W., Damjanovic, D., and Rödel, J.: Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108 (2011).
41.Davies, M., Aksel, E., and Jones, J.L.: Enhanced high-temperature piezoelectric coefficients and thermal stability of Fe- and Mn-substituted Na0.5Bi0.5TiO3 ceramics. J. Am. Ceram. Soc. 94, 1314 (2011).
42.Frantti, J., Ivanov, S., Eriksson, S., Rundlöf, H., Lantto, V., Lappalainen, J., and Kakihana, M.: Phase transitions of Pb(ZrxTi1-x)O3 ceramics. Phys. Rev. B 66, 064108 (2002).
43.Hinterstein, M., Knapp, M., Holzel, M., Jo, W., Cervellino, A., Ehrenberg, H., and Fuess, H.: Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics. J. Appl. Crystallogr. 43, 1314 (2010).
44.Schmitt, L.A., Hinterstein, M., Kleebe, H.J., and Fuess, H.: Comparative study of two lead-free piezoceramics using diffraction techniques. J. Appl. Crystallogr. 43, 805 (2010).
45.Peng, J. and Bursill, L.A.: Polar and chemical domain structures of lead scandium tantalate (PST). Mod. Phys. Lett. B 7, 609 (1993).
46.Zhou, D.H., Hoatson, G.L., Vold, R.L., and Fayon, F.: Local structure in perovskite relaxor ferroelectrics by 207Pb NMR. Phys. Rev. B 69, 134104 (2004).
47.Maier, B.J., Angel, R.J., Marshall, W.G., Mihailova, B., Paulmann, C., Engel, J.M., Gospodinov, M., Welsch, A.M., Petrova, D., and Bismayer, U.: Octahedral tilting in Pb-based relaxor ferroelectrics at high pressure. Acta Crystallogr., Sect. B: Struct. Sci. 66, 280 (2010).
48.Jones, G.O. and Thomas, P.A.: Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na1/2Bi1/2TiO3. Acta Crystallogr., Sect. B: Struct. Sci. 58, 168 (2002).
49.Kreisel, J., Bouvier, P., Dkhil, B., Thomas, P.A., Glazer, A.M., Welberry, T.R., Chaabane, B., and Mezouar, M.: High-pressure x-ray scattering of oxides with a nanoscale local structure: Application to Na1/2Bi1/2TiO3. Phys. Rev. B 68, 014113 (2003).
50.Said, S. and Mercurio, J.P.: Relaxor behaviour of low lead and lead free ferroelectric ceramics of the Na1/2Bi1/2TiO3-PbTiO3 and Na1/2Bi1/2TiO3-K0.5Bi0.5TiO3 systems. J. Eur. Ceram. Soc. 21, 1333 (2001).
51.Jo, W., Schaab, S., Sapper, E., Schmitt, L.A., Kleebe, H-J., Bell, A.J., and Rodel, J.: On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011).

Keywords

Type Description Title
WORD
Supplementary materials

Anton Supplementary Material
Tables

 Word (724 KB)
724 KB

Structure and temperature-dependent phase transitions of lead-free Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–K0.5Na0.5NbO3 piezoceramics

  • Eva-Maria Anton (a1), Ljubomira Ana Schmitt (a2), Manuel Hinterstein (a3), Joe Trodahl (a4), Ben Kowalski (a5), Wook Jo (a6), Hans-Joachim Kleebe (a7), Jürgen Rödel (a8) and Jacob L. Jones (a9)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed