Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T09:03:08.261Z Has data issue: false hasContentIssue false

Structural transformations of alumina by high energy ball milling

Published online by Cambridge University Press:  03 March 2011

P.A. ZielińAski
Affiliation:
Département de Génie Chimique, Université Laval, Québec G1K 7P4, Canada
R. Schulz
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro-Québec, Varennes, Québec J3X 1S1, Canada
S. Kaliaguine
Affiliation:
Département de Génie Chimique, Université Laval, Québec G1K 7P4, Canada
A. Van Neste
Affiliation:
Département de Mines et Métallurgie, Université Laval, Québec G1K 7P4, Canada
Get access

Abstract

Room temperature, high energy ball milling was applied to various transition aluminas (γ, K, χ), producing thermodynamically stable α-alumina–a phenomenon that could otherwise be achieved only by high temperature (1100–1200 °C) heat treatment. The transformation proceeds in two steps. The first one consists of rapid microstructural rearrangements with continuously increasing α-transformation rate. In the second step (1–2 h from the start), only relatively small changes in morphology are observed with a constant α-transformation rate. The rate is influenced only by the milling intensity. The presence or the absence of oxygen in the milling atmosphere has a large influence on the final surface area of α-alumina.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dorre, E. and Hubner, H., Alumina, Processing, Properties and Applications (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984).Google Scholar
2Lippens, B. C. and Steggerda, J. J., Physical and Chemical Aspects of Adsorbents and Catalysts (Academic Press, New York, 1970).Google Scholar
3Tertian, R. and Papee, D., J. Chim. Phys. 55, 341 (1958).CrossRefGoogle Scholar
4Papee, D. and Tertian, R., Bull. Soc. Chim. France, 983 (1955).Google Scholar
5Lippens, B. C., Thesis, University of Technology, Delft, Netherlands (1961).Google Scholar
6Anderson, J. R., Structure of Metallic Catalysts (Academic Press, London, New York, San Francisco, 1975).Google Scholar
7Schultz, L., J. Less-Comm. Met. 145, 233 (1988).CrossRefGoogle Scholar
8Van, A. Neste, Kaliaguine, S., Trudeau, M., and Schulz, R., in Kinetics of Phase Transformations, edited by Thompson, M. O., Aziz, M. J., and Stephenson, G. B. (Mater. Res. Soc. Symp. Proc. 205, Pittsburgh, PA, 1992), p. 227.Google Scholar
9Lafrance, C. P., MSc Thesis, Laval University (1985).Google Scholar
10Weast, R. C., Handbook of Chemistry and Physics (The Chemical Rubber Co., 1973).Google Scholar
11Brockhoff, J.C.D. and de Boer, J.H., J. Catal. 10, 368 (1968).CrossRefGoogle Scholar
12de Boer, J.H., The Structure and Properties of Porous Materials (Butterworths, London, 1958), p. 68.Google Scholar
13Singer, F. and Singer, S. S., Industrial Ceramics (Chapman & Hall Ltd., London, 1963).CrossRefGoogle Scholar
14Bridgman, P. W., J. Appl. Phys. 18, 246 (1947).CrossRefGoogle Scholar
15Davis, R. M., McDermott, B., and Koch, C. C., Metall. Trans. 19A, 2867 (1988).CrossRefGoogle Scholar
16Van, A. Neste, Lamarre, A., Trudeau, M. L., and Schulz, R., J. Mater. Res. 7, 2412 (1992).Google Scholar