Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:16:10.474Z Has data issue: false hasContentIssue false

Structural transformations in highly oriented seven modulated martensite Ni–Mn–Ga thin films on an Al2O3$\left( {11\bar 20} \right)$ substrate

Published online by Cambridge University Press:  19 September 2016

Amit Sharma
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India; and Center of Nano-Science and Engineering, Indian Institute of Science, Bangalore 560012, India
Sangeneni Mohan
Affiliation:
Center of Nano-Science and Engineering, Indian Institute of Science, Bangalore 560012, India
Satyam Suwas*
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
*
a)Address all correspondence to this author. e-mail: satyamsuwas@materials.iisc.ernet.in
Get access

Abstract

Highly oriented Ni–Mn–Ga thin film with multiple variants and room temperature orthorhombic martensite structure were prepared on a single crystalline Al2O3$\left( {11\bar 20} \right)$ substrate by DC magnetron sputtering. X-ray diffraction and rocking curve measurements reveal the film as (202)7M oriented with an excellent crystal quality (Δω = 1.8°). Spot-like pole figures indicate that the Ni–Mn–Ga film grows with a strong in-plane preferred orientation. An in-depth analysis of the measured pole figure reveals the presence of a retained austenite phase in the film. Two phase transformations, MS ∼345 K and TC ∼385 K, are observed and are attributed to first order structural transformation from cubic to orthorhombic, and second order phase transformation from ferromagnetic to paramagnetic, respectively. In situ high temperature x-ray diffraction measurements provide a clear indication of a thermally-induced martensite ↔ austenite reversible structural phase transformation in the film. The presence of martensite plates with seven modulated orthorhombic structure and adaptive nano-twins are some of the important microscopic features observed in the film with transmission electron microscopy investigations.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sozinov, A., Likhachev, A., Lanska, N., and Ullakko, K.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746 (2002).CrossRefGoogle Scholar
Faran, E. and Shilo, D.: Implications of twinning kinetics on the frequency response in NiMnGa actuators. Appl. Phys. Lett. 100, 151901 (2012).CrossRefGoogle Scholar
Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, Cambridge, 1999).Google Scholar
Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., and Oikawa, K.: Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358 (2004).Google Scholar
Kakeshita, T., Takeuchi, T., Fukuda, T., Tsujiguchi, M., Saburi, T., Oshima, R., and Muto, S.: Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502 (2000).Google Scholar
James, R.D. and Wuttig, M.: Magnetostriction of martensite. Philos. Mag. A 77, 1273 (1998).Google Scholar
Oikawa, K., Ota, T., Gejima, F., Ohmori, T., Kainuma, R., and Ishida, K.: Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater. Trans. 42, 2472 (2001).CrossRefGoogle Scholar
Oikawa, K., Wulff, L., Iijima, T., Gejima, F., Ohmori, T., Fujita, A., Fukamichi, K., Kainuma, R., and Ishida, K.: Promising ferromagnetic Ni–Co–Al shape memory alloy system. Appl. Phys. Lett. 79, 3290 (2001).Google Scholar
Marcos, J., Mañosa, L., Planes, A., Casanova, F., Batlle, X., and Labarta, A.: Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 68, 094401 (2003).CrossRefGoogle Scholar
Kiefer, B. and Lagoudas, D.C.: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. 85, 4289 (2005).Google Scholar
Karaca, H., Karaman, I., Basaran, B., Lagoudas, D., Chumlyakov, Y.I., and Maier, H.: On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 55, 4253 (2007).Google Scholar
Ohtsuka, M., Matsumoto, M., and Itagaki, K.: Effect of iron and cobalt addition on magnetic and shape memory properties of Ni2MnGa sputtered films. Mater. Sci. Eng., A 438, 935 (2006).CrossRefGoogle Scholar
Mahnke, G.J., Seibt, M., and Mayr, S.: Microstructure and twinning in epitaxial NiMnGa films. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 012101 (2008).Google Scholar
Thomas, M., Heczko, O., Buschbeck, J., Rößler, U., McCord, J., Scheerbaum, N., Schultz, L., and Fähler, S.: Magnetically induced reorientation of martensite variants in constrained epitaxial Ni–Mn–Ga films grown on MgO (001). New J. Phys. 10, 023040 (2008).Google Scholar
Backen, A., Yeduru, S.R., Kohl, M., Baunack, S., Diestel, A., Holzapfel, B., Schultz, L., and Fähler, S.: Comparing properties of substrate-constrained and freestanding epitaxial Ni–Mn–Ga films. Acta Mater. 58, 3415 (2010).Google Scholar
Sharma, A., Mohan, S., and Suwas, S.: Development of bi-axial preferred orientation in epitaxial NiMnGa thin films and its consequence on magnetic properties. Acta Mater. 113, 259 (2016).Google Scholar
Tello, P., Castano, F., O'Handley, R.C., Allen, S.M., Esteve, M., Castano, F., Labarta, A., and Batlle, X.: Ni–Mn–Ga thin films produced by pulsed laser deposition. J. Appl. Phys. 91, 8234 (2002).Google Scholar
Hakola, A., Heczko, O., Jaakkola, A., Kajava, T., and Ullakko, K.: Pulsed laser deposition of NiMnGa thin films on silicon. Appl. Phys. A 79, 1505 (2004).CrossRefGoogle Scholar
Rumpf, H., Craciunescu, C., Modrow, H., Olimov, K., Quandt, E., and Wuttig, M.: Successive occurrence of ferromagnetic and shape memory properties during crystallization of NiMnGa freestanding films. J. Magn. Magn. Mater. 302, 421 (2006).CrossRefGoogle Scholar
Jin, X., Marioni, M., Bono, D., Allen, S., O'Handley, R., and Hsu, T.: Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J. Appl. Phys. 91, 8222 (2002).Google Scholar
Righi, L., Albertini, F., Pareti, L., Paoluzi, A., and Calestani, G.: Commensurate and incommensurate “5M” modulated crystal structures in Ni–Mn–Ga martensitic phases. Acta Mater. 55, 5237 (2007).Google Scholar
Pons, J., Chernenko, V., Santamarta, R., and Cesari, E.: Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater. 48, 3027 (2000).Google Scholar
Lanska, N., Soderberg, O., Sozinov, A., Ge, Y., Ullakko, K., and Lindroos, V.: Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 8074 (2004).CrossRefGoogle Scholar
Martynov, V. and Kokorin, V.: The crystal structure of thermally-and stress-induced martensites in Ni2MnGa single crystals. J. Phys. III 2, 739 (1992).Google Scholar
Righi, L., Albertini, F., Villa, E., Paoluzi, A., Calestani, G., Chernenko, V., Besseghini, S., Ritter, C., and Passaretti, F.: Crystal structure of 7M modulated Ni–Mn–Ga martensitic phase. Acta Mater. 56, 4529 (2008).CrossRefGoogle Scholar
Jakob, G. and Elmers, H.J.: Epitaxial films of the magnetic shape memory material Ni2MnGa. J. Magn. Magn. Mater. 310, 2779 (2007).Google Scholar
Jakob, G., Eichhorn, T., Kallmayer, M., and Elmers, H.J.: Correlation of electronic structure and martensitic transition in epitaxial Ni2MnGa films. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 174407 (2007).Google Scholar
Tillier, J., Bourgault, D., Odier, P., Ortega, L., Pairis, S., Fruchart, O., Caillault, N., and Carbone, L.: Tuning macro-twinned domain sizes and the b-variants content of the adaptive 14-modulated martensite in epitaxial Ni–Mn–Ga films by co-sputtering. Acta Mater. 59, 75 (2011).CrossRefGoogle Scholar
Yang, B., Zhang, Y., Li, Z., Qin, G., Zhao, X., Esling, C., and Zuo, L.: Insight into variant selection of seven-layer modulated martensite in Ni–Mn–Ga thin films grown on MgO (001) substrate. Acta Mater. 93, 215 (2015).Google Scholar
Yang, B., Li, Z.B., Zhang, Y.D., Qin, G.W., Esling, C., Perroud, O., Zhao, X., and Zuo, L.: Microstructural features and orientation correlations of non-modulated martensite in Ni–Mn–Ga epitaxial thin films. Acta Mater. 61, 6809 (2013).Google Scholar
Schulz, L.: A direct method of determining preferred orientation of a flat reflection sample using a Geiger Counter x-ray spectrometer. J. Appl. Phys. 20, 1030 (1949).Google Scholar
Pawlik, K. and Ozga, P.: LaboTex: the texture analysis software. Göttinger Arbeiten zur Geologie und Paläontologie, SB4 (1999).Google Scholar
Dunand, D.C. and Müllner, P.: Size effects on magnetic actuation in Ni–Mn–Ga shape-memory alloys. Adv. Mater. 23, 216 (2011).Google Scholar
Hordon, M. and Averbach, B.: X-ray measurements of dislocation density in deformed copper and aluminum single crystals. Acta Metall. 9, 237 (1961).Google Scholar
Petrov, I., Barna, P., Hultman, L., and Greene, J.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21, S117 (2003).Google Scholar
Gay, P., Hirsch, P., and Kelly, A.: The estimation of dislocation densities in metals from x-ray data. Acta Metall. 1, 315 (1953).CrossRefGoogle Scholar
Stadelmann, P.: JEMS JAVA electron microscopy software. Version 2 (2004); p. W2005.Google Scholar
Cong, D.Y., Zhang, Y.D., Esling, C., Wang, Y.D., Lecomte, J.S., Zhao, X., and Zuo, L.: Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater. 59, 7070 (2011).Google Scholar
Cong, D.Y., Zhang, Y.D., Wang, Y.D., Humbert, M., Zhao, X., Watanabe, T., Zuo, L., and Esling, C.: Experiment and theoretical prediction of martensitic transformation crystallography in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater. 55, 4731 (2007).CrossRefGoogle Scholar
Yang, B., Zhang, Y., Li, Z., Qin, G., Esling, C., Zhao, X., and Zuo, L.: Crystallographic orientation of modulated martensite in epitaxially grown Ni–Mn–Ga thin film. Thin Solid Films 584, 90 (2015).CrossRefGoogle Scholar
Brown, P.J., Dennis, B., Crangle, J., Kanomata, T., Matsumoto, M., Neumann, K-U., Justham, L.M., and Ziebeck, K.R.A.: Stability of martensitic domains in the ferromagnetic alloy Ni2MnGa: A mechanism for shape memory behaviour. J. Phys.: Condens. Matter 16, 65 (2003).Google Scholar
Khachaturyan, A., Shapiro, S., and Semenovskaya, S.: Adaptive phase formation in martensitic transformation. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 10832 (1991).Google Scholar
Pons, J., Santamarta, R., Chernenko, V., and Cesari, E.: Structure of the layered martensitic phases of Ni–Mn–Ga alloys. Mater. Sci. Eng., A 438, 931 (2006).Google Scholar
Johnson, M., Bloemen, P., Den Broeder, F., and De Vries, J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409 (1996).Google Scholar
Straka, L., Heczko, O., and Ullakko, K.: Investigation of magnetic anisotropy of Ni–Mn–Ga seven-layered orthorhombic martensite. J. Magn. Magn. Mater. 272, 2049 (2004).Google Scholar
Heczko, O., Jurek, K., and Ullakko, K.: Magnetic properties and domain structure of magnetic shape memory Ni–Mn–Ga alloy. J. Magn. Magn. Mater. 226, 996 (2001).Google Scholar
Zhang, Y., Hughes, R., Britten, J., Preston, J., Botton, G., and Niewczas, M.: Self-activated reversibility in the magnetically induced reorientation of martensitic variants in ferromagnetic Ni–Mn–Ga films. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 054406 (2010).Google Scholar