Skip to main content Accessibility help
×
Home

Structural complexity of layered-spinel composite electrodes for Li-ion batteries

  • Jordi Cabana (a1), Christopher S. Johnson (a2), Xiao-Qing Yang, Kyung-Yoon Chung (a3), Won-Sub Yoon (a4), Sun-Ho Kang, Michael M. Thackeray (a2) and Clare P. Grey (a1)...

Abstract

The complexity of layered-spinel yLi2MnO3·(1 – y)Li1+xMn2–xO4 (Li:Mn = 1.2:1; 0 ≤ x ≤ 0.33; y ≥ 0.45) composites synthesized at different temperatures has been investigated by a combination of x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and nuclear magnetic resonance (NMR). While the layered component does not change substantially between samples, an evolution of the spinel component from a high to a low lithium excess phase has been traced with temperature by comparing with data for pure Li1+xMn2–xO4. The changes that occur to the structure of the spinel component and to the average oxidation state of the manganese ions within the composite structure as lithium is electrochemically removed in a battery have been monitored using these techniques, in some cases in situ. Our 6Li NMR results constitute the first direct observation of lithium removal from Li2MnO3 and the formation of LiMnO2 upon lithium reinsertion.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: wsyoon@kookmin.ac.kr
b)Address all correspondence to this author. e-mail: cgrey@notes.cc.sunysb.edu

References

Hide All
1.Armand, M., Tarascon, J.M.Building better batteries. Nature 451, 652 (2008)
2.Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997)
3.Nagaura, T., Tozawa, K.Lithium ion rechargeable battery. Prog. Batteries Sol. Cells 9, 209 (1990)
4.Whittingham, M.S.Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004)
5.Tarascon, J.M., Guyomard, D.The Li1+xMn2O4/C rocking-chair system: A review. Electrochim. Acta 38, 1221 (1993)
6.Thackeray, M.M.Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1 (1997)
7.Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B.Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461 (1983)
8.Mosbah, A., Verbaere, A., Tournoux, M.LiXMnO2λ phases related to the spinel type. Mater. Res. Bull. 18, 1375 (1983)
9.David, W.I.F., Thackeray, M.M., De Picciotto, L.A., Goodenough, J.B.Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4. J. Solid State Chem. 67, 316 (1987)
10.Le Cras, F., Anne, M., Bloch, D., Strobel, P.Structural in-situ study of Li intercalation in Li1+αMn2–αO4 spinel-type oxides. Solid State Ionics 106, 1 (1998)
11.Kalyani, P., Chitra, S., Mohan, T., Gopukumar, S.Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 80, 103 (1999)
12.Robertson, A.D., Bruce, P.G.Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15, 1984 (2003)
13.Rossouw, M.H., Liles, D.C., Thackeray, M.M.Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2. J. Solid State Chem. 104, 464 (1993)
14.Tang, W.P., Kanoh, H.F., Yang, X.J., Ooi, K.Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions. Chem. Mater. 12, 3271 (2000)
15.Paik, Y., Grey, C.P., Johnson, C.S., Kim, J.S., Thackeray, M.M.Lithium and deuterium NMR studies of acid-leached layered lithium manganese oxides. Chem. Mater. 14, 5109 (2002)
16.Rossouw, M.H., Liles, D.C., Thackeray, M.M., David, W.I.F., Hull, S.Alpha manganese dioxide for lithium batteries: A structural and electrochemical study. Mater. Res. Bull. 27, 221 (1992)
17.Thackeray, M.M., Johnson, C.S., Vaughey, J.T., Li, N., Hackney, S.A.Advances in manganese-oxide ‘composite' electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257 (2005)
18.Johnson, C.S., Li, N., Vaughey, J.T., Hackney, S.A., Thackeray, M.M.Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3·(1 – x)Li1+yMn2–yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem. Commun. 7, 528 (2005)
19.Park, S.H., Kang, S.H., Johnson, C.S., Amine, K., Thackeray, M.M.Lithium–manganese–nickel-oxide electrodes with integrated layered–spinel structures for lithium batteries. Electrochem. Commun. 9, 262 (2007)
20.Cabana, J., Kang, S.H., Johnson, C.S., Thackeray, M.M., Grey, C.P.Structural and electrochemical characterization of composite layered-spinel electrodes containing Ni and Mn for Li-ion batteries. J. Electrochem. Soc. 156, A730 (2009)
21.Thompson, P., Cox, D.E., Hastings, J.B.Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3. J. Appl. Cryst. 20, 79 (1987)
22.Casas-Cabanas, M., Rodríguez-Carvajal, J., Oró-Solé, J., Palacín, M.R.A survey of diverse approximations for microstructural characterization using powder diffraction data: β-Ni(OH)2 a case studySolid-State Ionics—2006 edited by E. Traversa, T.R. Armstrong, C. Masquelier, and Y. Sadaoka (Mater. Res. Soc. Symp. Proc 972, Warrendale, PA 2007) 0972-AA13-01 227
23.Takada, T., Hayakawa, H., Akiba, E.Preparation and crystal structure refinement of Li4Mn5O12 by the Rietveld method. J. Solid State Chem. 115, 420 (1995)
24.Fong, C., Kennedy, B.J., Elcombe, M.M.A powder neutron-diffraction study of lambda-manganese dioxide and gamma-manganese dioxide and of LiMn2O4. Z. Kristallogr. 209, 941 (1994)
25.Strobel, P., Lambert-Andron, B.Crystallographic and magnetic-structure of Li2MnO3. J. Solid State Chem. 75, 90 (1988)
26.Bréger, J., Jiang, M., Dupré, N., Meng, Y.S., Shao-Horn, Y., Ceder, G., Grey, C.P.High-resolution x-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2575 (2005)
27.Grey, C.P., Dupré, N.NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493 (2004)
28.Lee, Y.J., Grey, C.P.Determining the lithium local environments in the lithium manganates LiZn0.5Mn1.5O4 and Li2MnO3 by analysis of the 6Li MAS NMR spinning sideband manifolds. J. Phys. Chem. B 106, 3576 (2002)
29.Mustarelli, P., Massarotti, V., Bini, M., Capsoni, D.Transferred hyperfine interaction and structure in LiMn2O4 and Li2MnO3 coexisting phases: A XRD and 7Li NMR-MAS study. Phys. Rev. B 55, 12018 (1997)
30.Morgan, K.R., Collier, S., Burns, G., Ooi, K.A 6Li and 7Li MAS NMR-study of the spinel-type manganese oxide LiMn2O4 and the rock salt-type manganese oxide Li2MnO3. J. Chem. Soc. Chem. Commun. 1719 (1994)
31.Grey, C.P., Lee, Y.J.Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci. 5, 883 (2003)
32.Casas-Cabanas, M., Rodríguez-Carvajal, J., Canales-Vázquez, J., Laligant, Y., Lacorre, P., Palacín, M.R.Microstructural characterization of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches. J. Power Sources 174, 414 (2007)
33.Lee, Y.J., Grey, C.P.6Li and 7Li MAS NMR studies of lithium manganate cathode materials. J. Am. Chem. Soc. 120, 12601 (1998)
34.Lee, Y.J., Grey, C.P.6Li magic angle spinning nuclear magnetic resonance study of the cathode materials Li1+αMn2–αO4–δ—The effect of local structure on the electrochemical properties. J. Electrochem. Soc. 2, A103 (2002)
35.Masquelier, C., Tabuchi, M., Ado, K., Kanno, R., Kobayashi, Y., Maki, Y., Nakamura, O., Goodenough, J.B.Chemical and magnetic characterization of spinel materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 system. J. Solid State Chem. 123, 255 (1996)
36.Paulsen, J.M., Dahn, J.R.Phase diagram of Li-Mn-O spinel in air. Chem. Mater. 11, 3065 (1999)
37.Gummow, R.J., De Kock, A., Thackeray, M.M.Improved capacity retention in rechargeable 4V lithium/lithium manganese oxide (spinel) cells. Solid State Ionics 69, 59 (1994)
38.Hunter, J.C.Preparation of a new crystal form of manganese dioxide: λ-MnO2. J. Solid State Chem. 39, 142 (1981)
39.Thackeray, M.M., De Kock, A., Rossouw, M.H., Liles, D., Bittihn, R., Hoge, D.Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications. J. Electrochem. Soc. 139, 363 (1992)
40.Ohzuku, T., Kitagawa, M., Hirai, T.Electrochemistry of manganese-dioxide in lithium nonaqueous cell. 3. X-ray diffractional study on the reduction of spinel-related manganese-dioxide. J. Electrochem. Soc. 137, 769 (1990)
41.Lee, Y.J., Grey, C.P.6Li magic-angle spinning (MAS) NMR study of electron correlations, magnetic ordering, and stability of lithium manganese(III) oxides. Chem. Mater. 12, 3871 (2000)
42.Xia, Y.Y., Yoshio, M.An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds. J. Electrochem. Soc. 143, 825 (1996)
43.Richard, M.N., Koetschau, I., Dahn, J.R.A cell for in situ x-ray diffraction based on coin cell hardware and Bellcore plastic electrode technology. J. Electrochem. Soc. 144, 554 (1997)
44.Lee, Y.J., Wang, F., Mukerjee, S., McBreen, J., Grey, C.P.6Li and 7Li magic-angle spinning nuclear magnetic resonance and in situ x-ray diffraction studies of the charging and discharging of LixMn2O4 at 4 V. J. Electrochem. Soc. 147, 803 (2000)
45.Rossouw, M.H., Thackeray, M.M.Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mater. Res. Bull. 26, 463 (1991)

Keywords

Structural complexity of layered-spinel composite electrodes for Li-ion batteries

  • Jordi Cabana (a1), Christopher S. Johnson (a2), Xiao-Qing Yang, Kyung-Yoon Chung (a3), Won-Sub Yoon (a4), Sun-Ho Kang, Michael M. Thackeray (a2) and Clare P. Grey (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed