Skip to main content Accessibility help

Structural characterization of Ti implanted AlN

  • M. Borowski (a1), A. Traverse (a1) and J.P. Dallas (a2)


Sintered AlN ceramics were implanted by 1 × 1017 Ti/cm2 at an energy of 70 keV in order to investigate the role of the chemical properties of the implanted species on the phase formed during the implantation process. The implanted ions were found in a depth profile corresponding to the calculated distribution of the vacancies produced during the implantation process instead of the predicted ion profile. Identification of the local environment of Ti and of the resulting phase led us to conclude that Ti is surrounded by N after the collision cascade and forms TiN after post-implantation annealing. The TiN nucleus if formed by substitution of Al by Ti. Therefore, the heat of formation, which is more negative for TiN than for AlN, is found to be a key parameter to predict the final system.



Hide All
1Sheppard, L. M., Am. Ceram. Soc. Bull. 70, 1467 (1991).
2Marchant, D. D. and Nemecek, T. E., Am. Ceram. Soc. Adv. in Ceram. 26, 19 (1989).
3Averback, R. S., Diaz de la Rubia, T., Hsieh, H., and Benedek, R., Nucl. Instrum. Methods B59/60, 709 (1991).
4Cheng, Y. T., Mater. Sci. Rep. 5, 45 (1990).
5Desimoni, J. and Traverse, A., Phys. Rev. B 48, 13 266 (1993).
6Traverse, A., Parent, P., Mimault, J., Hagege, S., and Du, J., Nucl. Instrum. Methods B84, 204 (1994).
7Du, J., Traverse, A., and Hagège, S., Mat. Sci. Forum 126/128, 703 (1993).
8Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Bailey, S. M., Halow, I., Churney, K. L., and Nuttall, R. L., in CRC-Hcmdbook of Chemistry and Physics, edited by Weast, R. C. and Astle, M. J. (CRC Press, Boca Raton, FL, 1989), p. D-50.
9Th. Mroz, Am. Ceram. Soc. Bull. 73, 77 (1994).
10Denanot, M. F. and Rabier, J., Mater. Sci. Eng. A109, 157 (1989).
11Naguchi, T. and Mizuno, M., Kogyo Kogaku Zasshi 70, 839 (1967).
12Bernas, H., Chaumont, J., Cottereau, E., Meunier, R., Traverse, A., Clerc, C., Kaitasov, O., Lalu, F., Le Du, D., Moroy, G., and Salomsé, M., Nucl. Instrum. Methods B62, 416 (1992).
13Lengauer, W., J. Alloys and Compounds 186, 293 (1992).
14Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1985).
15Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1986), Vols. I and II.
16Stern, E. A., Sayers, D. E., and Lytle, W., Phys. Rev. 11, 1975 (1951).
17Michalowicz, A., Logiciels pour la Chirnie (Société française de Chimie, Paris, 1991), p. 102.
18McKale, A. G., J. Am. Chem. Soc. 110, 3763 (1988).
19Kampers, F. W. H., Doctoral Thesis, University of Eindhoven (1989).
20Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworths, London, 1983).
21Priem, T., Beuneu, B., de Novion, C., Finel, A., and Livet, F., J. Phys. France 50, 2217 (1989).
22Beer, A., Ann. Phys. 86, 78 (1952).
23Agarwal, B. K., X-Ray Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1979).
24Feldman, L. C. and Mayer, J. W., Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986).

Structural characterization of Ti implanted AlN

  • M. Borowski (a1), A. Traverse (a1) and J.P. Dallas (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed