Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T01:05:32.763Z Has data issue: false hasContentIssue false

Structural characterization of laser ablated epitaxial (Ba0.5Sr0.5)TiO3 thin films on MgO(001) by synchrotron x-ray scattering

Published online by Cambridge University Press:  31 January 2011

Sangsub Kim
Affiliation:
Department of Materials Science and Metallurgical Engineering, Sunchon National University, Sunchon 540-742, Korea
Tae Soo Kang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
Jung Ho Je*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
*
a) Address all correspondence to this author. e-mail: jhje@postech.ac.kr
Get access

Abstract

Epitaxial (Ba0.5Sr0.5) TiO3 thin films of two different thickness (∼25 and ∼134 nm) on MgO(001) prepared by a pulsed laser deposition method were studied by synchrotron x-ray scattering measurements. The film grew initially with a cube-on-cube relationship, maintaining it during further growth. As the film grew, the surface of the film became significantly rougher, but the interface between the film and the substrate did not. In the early stage of growth, the film was highly strained in a tetragonal structure (c/a = 1.04) with the longer axis parallel to the surface normal direction. As the growth proceeded further, it relaxed to a cubic structure with the lattice parameter near the bulk value, and the mosaic distribution improved significantly in both in- and out-of-plane directions. The thinner film (∼25 nm) showed only one domain limited mainly by the film thickness, but the thicker film (∼134 nm) exhibited three domains along the surface normal direction.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Roy, D. and Krupanidhi, S., Appl. Phys. Lett. 62, 1056 (1993).CrossRefGoogle Scholar
2.Peng, C.J. and Krupanidhi, S.B., J. Mater. Res. 10, 708 (1995).CrossRefGoogle Scholar
3.Kim, T.S., Kim, C.H., and Oh, M.H., J. Appl. Phys. 75, 7998 (1994).CrossRefGoogle Scholar
4.Jia, Q.X., Wu, X.D., Foltyn, S.R., and Tiwari, P., Appl. Phys. Lett. 66, 2197 (1995).CrossRefGoogle Scholar
5.Jang, S.I., Choi, B.C., and Jang, H.M., J. Mater. Res. 12, 1327 (1997).CrossRefGoogle Scholar
6.Horikawa, T., Mikami, N., Ito, H., Ohno, Y., Makita, T., and Sato, K., IEICE Trans. Electron. E77–C, 385 (1994).Google Scholar
7.Hwang, C.S., Park, S.O., Cho, H.J., Kang, C.S., Kang, H.K., Lee, S.I., and Lee, M.Y., Appl. Phys. Lett. 67, 2819 (1995).CrossRefGoogle Scholar
8.Horwitz, J.S., Pond, J.M., Tadayan, B., Auyeung, R.C.Y, Dorsey, P.C., Chrisey, D.B., Qadri, S.B., and Muller, C., in Ferroelectric Thin Films IV, edited by Desu, S.B., Tuttle, B.A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 515.Google Scholar
9.Horwitz, J.S., Chrisey, D.B., Carter, A.C., Chang, W., Knauss, L.A., Pond, J.M., Kirchoefer, S.W., Korn, D., and Qadri, S.B., Proc. SPIE, 2991, 238 (1997).CrossRefGoogle Scholar
10.Findikoglu, A.T., Jia, Q.X., Reagor, D.W., and Wu, X.D., Microwave Opt. Technol. Lett. 9, 306 (1995).CrossRefGoogle Scholar
11.Kim, S. and Baik, S., J. Vac. Sci. Technol. A (13), 95 (1995).CrossRefGoogle Scholar
12.Je, J.H. and Noh, D.Y., J. Appl. Phys. 80, 2791 (1996).CrossRefGoogle Scholar
13.Je, J.H., Kang, T.S., and Noh, D.Y., J. Appl. Phys. 81, 1 (1997).Google Scholar
14.Shinha, S.K., Sanyal, M.K., Satija, S.K., Majkzak, C.F., Neumann, D.A., Homma, H., Szpala, S., Gibaud, A., and Morkoc, H., Physica B 198, 72 (1994).CrossRefGoogle Scholar
15.Bhattacharya, P., Komeda, T., Park, K., and Nishioka, Y., Jpn. J. Appl. Phys. 32, 4103 (1993).CrossRefGoogle Scholar
16.Qadri, S.B., Horwitz, J.S., Chrisey, D.B., Auyeung, R.C.Y, and Grabowski, K.S., Appl. Phys. Lett. 66, 1606 (1995).CrossRefGoogle Scholar
17.Kuroiwa, T., Tsunemine, Y., Horikawa, T., Makita, T., Tanimura, J., Mikami, N., and Sato, K., Jpn. J. Appl. Phys. 33, 5187 (1994).CrossRefGoogle Scholar
18.Kim, T.S., Oh, M.H., and Kim, C.H., Thin Solid Films 254, 273 (1995).CrossRefGoogle Scholar
19.McQuarrie, M., J. Am. Ceram. Soc. 38, 444 (1995).CrossRefGoogle Scholar
20.Refractory Materials in Machinery Construction (Handbook), edited by Tumanov, A.T. and Portnyi, K.I. (I2d. Mashinostroenie, Moscow, 1967).Google Scholar
21.Srikant, V., Tarsa, E.J., Clarke, D.R., and Speck, J.S., J. Appl. Phys. 77, 1517 (1995).CrossRefGoogle Scholar
22.Seifert, A., Lange, F.F., and Speck, J.S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
23.Iijima, K., Terashima, T., Yamamoto, K., Hirata, K., and Bando, Y., Appl. Phys. Lett. 56, 527 (1990).CrossRefGoogle Scholar
24.Terauchi, H., Watanabe, Y., Kasatani, H., Kamigaki, K., Yano, Y., Terashima, T., and Bando, Y., J. Phys. Soc. Jpn. 61, 2194 (1992).CrossRefGoogle Scholar
25.Abe, K. and Komatsu, S., J. Appl. Phys. 77, 6461 (1995).CrossRefGoogle Scholar
26.Warren, B.E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), Chap. 13.Google Scholar