Skip to main content Accessibility help
×
Home

Structural characterization of B-doped diamond nanoindentation tips

  • David J. Sprouster (a1), Simon Ruffell (a1), Jodie E. Bradby (a1), James S. Williams (a1), Mark N. Lockrey (a2), Matthew R. Phillips (a2), Ryan C. Major (a3) and Oden L. Warren (a3)...

Abstract

We report on the electrical and structural properties of boron-doped diamond tips commonly used for in-situ electromechanical testing during nanoindentation. The boron dopant environment, as evidenced by cathodoluminescence (CL) microscopy, revealed significantly different boron states within each tip. Characteristic emission bands of both electrically activated and nonelectrically activated boron centers were identified in all boron-doped tips. Surface CL mapping also revealed vastly different surface properties, confirming a high amount of nonelectrically activated boron clusters at the tip surface. Raman microspectroscopy analysis showed that structural characteristics at the atomic scale for boron-doped tips also differ significantly when compared to an undoped diamond tip. Furthermore, the active boron concentration, as inferred via the Raman analysis, varied greatly from tip-to-tip. It was found that tips (or tip areas) with low overall boron concentration have a higher number of electrically inactive boron, and thus non-Ohmic contacts were made when these tips contacted metallic substrates. Conversely, tips that have higher boron concentrations and a higher number of electrically active boron centers display Ohmic-like contacts. Our results demonstrate the necessity to understand and fully characterize the boron environments, boron concentrations, and atomic structure of the tips prior to performing in situ electromechanical experiments, particularly if quantitative electrical data are required.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: djs109@physics.anu.edu.au

References

Hide All
1.Eremets, M.I., Struzhkin, V.V., Mao, H-K., and Hemley, R.J.: Superconductivity in boron. Science 293, 272 (2001).
2.Besson, J.M., Mokhtari, E.H., Gonzalez, J., and Weill, G.: Electrical properties of semimetallic silicon III and semiconductive silicon IV at ambient pressure. Phys. Rev. Lett. 59, 473 (1987).
3.Nowak, R., Chrobak, D., Nagao, S., Vodnick, D., Berg, M., Tukiainen, A., and Pessa, M.: An electric current spike linked to nanoscale plasticity. Nat. Nanotechnol. 4, 287 (2009).
4.Bradby, J.E., Williams, J.S., and Swain, M.V.: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).
5.Ruffell, S., Bradby, J.E., Williams, J.S., and Warren, O.L.: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22, 578 (2007).
6.Mann, A.B., van Heerden, D., Pethica, J.B., and Weihs, T.P.: Size-dependent phase transformations during point loading of silicon. J. Mater. Res. 15, 1754 (2000).
7.Ruffell, S., Sears, K., Knights, A.P., Bradby, J.E., and Williams, J.S.: Experimental evidence for semiconducting behavior of Si-XII. Phys. Rev. B 83, 075316 (2011).
8.Fang, L., Muhlstein, C.L., Collins, J.G., Romasco, A.L., and Friedman, L.H.: Continuous electrical in situ contact area measurement during instrumented indentation. J. Mater. Res. 23, 2480 (2008).
9.Fujisawa, N., Ruffell, S., Bradby, J.E., Williams, J.S., Haberl, B., and Warren, O.L.: Understanding pressure-induced phase-transformation behavior in silicon through in situ electrical probing under cyclic loading conditions. J. Appl. Phys. 105, 106111 (2009).
10.Ruffell, S., Bradby, J.E., Fujisawa, N., and Williams, J.S.: Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization. J. Appl. Phys. 101, 083531 (2007).
11.Bhaskaran, M., Sriram, S., Ruffell, S., and Mitchell, A.: Nanoscale characterization of energy generation from piezoelectric thin films. Adv. Funct. Mater. 21, 2251 (2011).
13.Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., and Morozovska, A.N.: Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning-probe microscopy. Annu. Rev. Mater. Res. 37, 189 (2007).
14.Holm, R.: Electric Contacts; Theory and Applications (Springer, New York, 2000).
15.Tachibana, T., Williams, B.E., and Glass, J.T.: Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. i. gold contacts: A non-carbide-forming metal. Phys. Rev. B 45, 11968 (1992).
16.Tachibana, T., Williams, B.E., and Glass, J.T.: Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. ii. Titanium contacts: A carbide-forming metal. Phys. Rev. B 45, 11975 (1992).
17.Trew, R.J., Yan, J.B., and Mock, P.M.: The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79, 598 (1991).
18.Thonke, K.: The boron acceptor in diamond. Semicond. Sci. Technol. 18, S20 (2003).
19.Tumilty, N., Welch, J., Lang, R., Wort, C., Balmer, R., and Jackman, R.B.: An impedance spectroscopic investigation of the electrical properties of delta-doped diamond structures. J. Appl. Phys. 106, 103707 (2009).
20.Iwashita, N., Swain, M.V., Field, J.S., Ohta, N., and Bitoh, S.: Elasto-plastic deformation of glass -like carbons heat-treated at different temperatures. Carbon 39, 1525 (2001).
21.Baumann, P.K. and Nemanich, R.J.: Electron affinity and Schottky barrier height of metal–diamond (100), (111), and (110) interfaces. J. Appl. Phys. 83, 2072 (1998).
22.Collins, A.T., Connor, A., Ly, C.H., Shareef, A., and Spear, P.M.: High-temperature annealing of optical centers in type-i diamond. J. Appl. Phys. 97, 083517 (2005).
23.Collins, A.T. and Woods, G.S.: Cathodoluminescence from giant platelets, and of the 2.526 eV vibronic system, in type Ia diamonds. Philos. Mag. B 45, 385 (1982).
24.Klein, P.B., Crossfield, M.D., Freitas, J.A. Jr., and Collins, A.T.: Donor-acceptor pair recombination in synthetic type-iib semiconducting diamond. Phys. Rev. B 51, 9634 (1995).
25.Robins, L.H., Cook, L.P., Farabaugh, E.N., and Feldman, A.: Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition. Phys. Rev. B 39, 13367 (1989).
26.Kadri, M., Araujo, D., Wade, M., Deneuville, A., and Bustarret, E.: Effect of oxygen on the cathodoluminescence signal from excitons, impurities and structural defects in homoepitaxial (100) diamond films. Diamond Relat. Mater. 14, 566 (2005).
27.Robins, L.H., Farabaugh, E.N., and Feldman, A.: Cathodoluminescence spectroscopy of free and bound excitons in chemical-vapor-deposited diamond. Phys. Rev. B 48, 14167 (1993).
28.Sternschulte, H., Horseling, J., Albrecht, T., and Thonke, K.: Characterization of doped and undoped CVD-diamond films by cathodoluminescence. Diamond Relat. Mater. 5, 585 (1996).
29.Takeuchi, D., Watanabe, H., Yamanaka, S., Okushi, H., Sawada, H., Ichinose, H., Sekiguchi, T., and Kajimura, K.: Origin of band-A emission in diamond thin films. Phys. Rev. B 63, 245328 (2001).
30.Kawarada, H., Matsuyama, H., Yokota, Y., Sogi, T., Yamaguchi, A., and Hiraki, A.: Excitonic recombination radiation in undoped and boron-doped chemical-vapor-deposited diamonds. Phys. Rev. B 47, 3633 (1993).
31.Kawarada, H., Yokota, Y., and Hiraki, A.: Intrinsic and extrinsic recombination radiation from undoped and boron-doped diamonds formed by plasma chemical vapor deposition. Appl. Phys. Lett. 57, 1889 (1990).
32.Graham, R.J., Moustakas, T.D., and Disko, M.M.: Cathodoluminescence imaging of defects and impurities in diamond films grown by chemical vapor deposition. J. Appl. Phys. 69, 3212 (1991).
33.Koizumi, S., Watanabe, K., Hasegawa, M., and Kanda, H.: Ultraviolet emission from a diamond pn junction. Science 292, 1899 (2001).
34.Lawson, S.C., Kanda, H., Kiyota, H., Tsutsumi, T., and Kawarada, H.: Cathodoluminescence from high-pressure synthetic and chemical-vapor-deposited diamond. J. Appl. Phys. 77, 1729 (1995).
35.Muret, P. and Wade, M.: Acceptor compensation by dislocations related defects in boron doped homoepitaxial diamond films from cathodoluminescence and Schottky diodes current-voltage characteristics. Phys. Status Solidi A 203, 3142 (2006).
36.Baron, C., Deneuville, A., Wade, M., Jomard, F., and Chevallier, J.: Cathodoluminescence measurements on heavily boron doped homoepitaxial diamond films and their interfaces with their Ib substrates. Phys. Status Solidi A 203, 544 (2006).
37.Kawarada, H., Yokota, Y., Mori, Y., Nishimura, K., and Hiraki, A.: Cathodoluminescence and electroluminescence of undoped and boron-doped diamond formed by plasma chemical vapor deposition. J. Appl. Phys. 67, 983 (1990).
38.Dean, P.J.: Bound excitons and donor-acceptor pairs in natural and synthetic diamond. Phys. Rev. 139, A588 (1965).
39.Ruan, J., Kobashi, K., and Choyke, W.J.: On the “band-A” emission and boron related luminescence in diamond. Appl. Phys. Lett. 60, 3138 (1992).
40.Knight, D.S. and White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).
41.Nishimura, K., Das, K., and Glass, J.T.: Material and electrical characterization of polycrystalline boron-doped diamond films grown by microwave plasma chemical vapor deposition. J. Appl. Phys. 69, 3142 (1991).
42.Mermoux, M., Jomard, F., Tavars, C., Omns, F., and Bustarret, E.: Raman characterization of boron-doped 111 homoepitaxial diamond layers. Diamond Relat. Mater. 15, 572 (2006).
43.Mermoux, M., Marcus, B., Swain, G.M., and Butler, J.E.: A confocal Raman imaging study of an optically transparent boron-doped diamond electrode. J. Phys. Chem. B 106, 10816 (2002).
44.Szunerits, S., Mermoux, M., Crisci, A., Marcus, B., Bouvier, P., Delabouglise, D., Petit, J.P., Janel, S., Boukherroub, R., and Tay, L.: Raman imaging and Kelvin probe microscopy for the examination of the heterogeneity of doping in polycrystalline boron-doped diamond electrodes. J. Phys. Chem. B 110, 23888 (2006).
45.Bourgeois, E., Bustarret, E., Achatz, P., Omnes, F., and Blase, X.: Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations. Phys. Rev. B 74, 094509 (2006).
46.Goss, J.P. and Briddon, P.R.: Theory of boron aggregates in diamond: First-principles calculations. Phys. Rev. B 73, 085204 (2006).
47.Ager, J.W. III, Walukiewicz, W., Mc Cluskey, M., Plano, M.A., and Landstrass, M.I.: Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 66, 616 (1995).
48.Gonon, P., Gheeraert, E., Deneuville, A., Fontaine, F., Abello, L., and Lucazeau, G.: Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance. J. Appl. Phys. 78, 7059 (1995).
49.Pruvost, F. and Deneuville, A.: Analysis of the Fano in diamond. Diamond Relat. Mater. 10, 531 (2001).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed