Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T05:32:11.115Z Has data issue: false hasContentIssue false

Structural characterization of a new acentric protonated garnet: Li6−xHxCaLa2Nb2O12

Published online by Cambridge University Press:  27 August 2013

Cyrille Galven
Affiliation:
LUNAM Université du Maine, Institut des Molécules et Matériaux du Mans (IMMM), 72085 Le Mans Cedex 9, France
Emmanuelle Suard
Affiliation:
Institut Laue-Langevin, 38042 Grenoble Cedex 9, France
Denis Mounier
Affiliation:
LUNAM Université du Maine, Institut des Molécules et Matériaux du Mans (IMMM), 72085 Le Mans Cedex 9, France; and Ecole Nationale Supérieure d’Ingénieurs du Mans (ENSIM), Université du Maine, 72085 Le Mans Cedex 9, France
Marie-Pierre Crosnier-Lopez
Affiliation:
LUNAM Université du Maine, Institut des Molécules et Matériaux du Mans (IMMM), 72085 Le Mans Cedex 9, France
Françoise Le Berre*
Affiliation:
LUNAM Université du Maine, Institut des Molécules et Matériaux du Mans (IMMM), 72085 Le Mans Cedex 9, France
*
a)Address all correspondence to this author. e-mail: francoise.le-berre@univ-lemans.fr
Get access

Abstract

A new acentric protonated garnet Li6−xHxCaLa2Nb2O12 has been synthesized and structurally characterized from Rietveld refinement of high-resolution neutron diffraction data. This phase can be prepared by Li+/H+ exchange on the mother garnet Li6CaLa2Nb2O12 in acetic acid heated at reflux for 4 days, conditions determined after several tests varying acid solution, time, and temperature. Li6−xHxCaLa2Nb2O12 crystallizes in the noncentrosymmetric cubic space group I$\overline 4$3d (no. 220) with the cell parameter a = 12.8040(3) Å. The noncentrosymmetry has been confirmed from unambiguous results obtained by second harmonic generation test as well as from transmission electron microscopy study (selected area electron diffraction). The Li+/H+ exchange corresponds to a topotactic reaction since this new protonated phase is built from the garnet framework [CaLa2Nb2O12]6− like its mother form Li6CaLa2Nb2O12 with lithium and proton cations distributed on different sites.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murugan, R., Thangadurai, V., and Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778 (2007).CrossRefGoogle Scholar
Thangadurai, V. and Weppner, W.: Li6ALa2Ta2O12 (A = Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107 (2005).CrossRefGoogle Scholar
Wang, W-G., Wang, X-P., Gao, Y-X., Yang, J-F., and Fang, Q-F.: Investigation on the stability of Li5La3Ta2O12 lithium ionic conductors in humid environment. Front. Mater. Sci. Chin. 4(2), 189 (2010).CrossRefGoogle Scholar
Galven, C., Fourquet, J.L., Crosnier-Lopez, M.P., and Le Berre, F.: Instability of the lithium garnet Li7La3Sn2O12: Li+/H+ exchange and structural study. Chem. Mater. 23, 1892 (2011).CrossRefGoogle Scholar
Galven, C., Dittmer, J., Suard, E., Le Berre, F., and Crosnier-Lopez, M.P.: Instability of lithium garnets against moisture; structural characterization and dynamics of Li7-xHxLa3Sn2O12 and Li5-xHxLa3Nb2O12. Chem. Mater. 24, 3335 (2012).CrossRefGoogle Scholar
Percival, J., Apperley, D., and Slater, P.R.: Synthesis and structural characterisation of the Li ion conducting garnet-related systems, Li6ALa2Nb2O12 (A = Ca, Sr). Solid State Ionics 179, 1693 (2008).CrossRefGoogle Scholar
Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
Rodriguez-Carvajal, J.: Program FULLPROF version July 2010.Google Scholar
Gonzales-Platas, J. and Rodriguez-Carvajal, J.: Graphic Fourier program GFOURIER version 04.06, Laboratoire Léon Brillouin, Saclay, France (2003).Google Scholar
Brese, N.E. and O’Keefe, M.: Bond-valence parameters for solids. Acta Crystallogr. B47, 192 (1991).CrossRefGoogle Scholar
Brown, I.D.: Private communication, LLB, version: March 2005, bound to FullProf.Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
Chakoumakos, B.C., Lager, G.A., and Fernandez-Baca, J.A.: Refinement of the structures of Sr3Al2O6 and the hydrogarnet Sr3Al2(O4D4)3 by Rietveld analysis of neutron powder diffraction data. Acta Crystallogr. C48, 414 (1992).Google Scholar
Galven, C., Fourquet, J.L., Suard, E., Crosnier-Lopez, M.P., and Le Berre, F.: Structural characterization of a new acentric Ruddelsden-Popper layered perovskite coumpound: LiHSrTa2O7. Dalton Trans. 39, 1 (2010).CrossRefGoogle Scholar