Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T02:45:55.878Z Has data issue: false hasContentIssue false

Structural and optical properties of graphene from green carbon source via thermal chemical vapor deposition

Published online by Cambridge University Press:  14 June 2016

M.J. Salifairus*
Affiliation:
NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; and NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
S.B. Abd Hamid
Affiliation:
Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
T. Soga
Affiliation:
Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555Japan
Salman A.H. Alrokayan
Affiliation:
Research Chair for Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
Haseeb A. Khan
Affiliation:
Research Chair for Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
M. Rusop*
Affiliation:
NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; and NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*
a)Address all correspondence to these authors. e-mail: salifairus_mj85@yahoo.co.uk
Get access

Abstract

Graphene is a 2D carbon allotrope that has attracted significant attention because its properties have a wide range of applications. Graphene was deposited on the polycrystalline nickel substrate with a dimension of 0.10 mm × 10 mm × 10 mm via thermal chemical vapor deposition (TCVD). The natural carbon source was obtained from a commercial palm oil as a carbon precursor. The D, G, and 2D bands described the vibration of graphitic layer and overtone of the D band at 1352, 1594, and 2716 cm−1, respectively. The lowest G band full width at half maximum (FWHM) was 38.7 cm−1 at 900 °C deposition temperature. In the x-ray diffraction (XRD) pattern, the FWHM of Ni (200) peak was 0.38°. Raman spectroscopy, UV–vis spectrophotometry, atomic force microscopy, XRD, and field emission scanning electron microscopy characterized the synthesized graphene. Multilayer graphene was successfully synthesized from the palm oil via TCVD.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).CrossRefGoogle ScholarPubMed
Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183191 (2007).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197200 (2005).CrossRefGoogle ScholarPubMed
Ruoff, R.S.: Graphene: Calling all chemists. Nat. Nanotechnol. 3, 1011 (2008).CrossRefGoogle ScholarPubMed
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 3035 (2009).CrossRefGoogle ScholarPubMed
Li, X., Vai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 13121314 (2009).CrossRefGoogle ScholarPubMed
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706710 (2009).CrossRefGoogle ScholarPubMed
Lin, Y.M., Jenkins, K.A., Garcia, A.V., Small, J.P., Farmer, D.B., and Avouris, P.: Operation of graphene transistors at gigahertz frequencies. Nano Lett. 9, 422426 (2009).CrossRefGoogle ScholarPubMed
Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., and Avouris, P.: 100-Ghz transistors from water-scale epitaxial graphene. Science 327, 662 (2010).CrossRefGoogle Scholar
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652655 (2007).CrossRefGoogle ScholarPubMed
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282286 (2006).CrossRefGoogle ScholarPubMed
Stoller, M.D., Park, S., and Zhu, Y., An, J., and Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 34983502 (2008).CrossRefGoogle ScholarPubMed
Schlapbach, L. and Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353358 (2001).CrossRefGoogle ScholarPubMed
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563568 (2008).CrossRefGoogle ScholarPubMed
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphene oxide. Carbon 45, 15581565 (2007).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., and de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 11911196 (2006).CrossRefGoogle ScholarPubMed
Zheng, M., Takei, K., Hsia, B., Fang, H., Zhang, X., Ferralis, N., Ko, H., Chueh, Y.L., Zhang, Y., Maboudian, R., and Javey, A.: Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96, 063110 (2010).CrossRefGoogle Scholar
Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 12291232 (2008).CrossRefGoogle ScholarPubMed
Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., and Rao, C.N.R.: Synthesis, structure and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 47264730 (2009).CrossRefGoogle Scholar
Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J., and Dai, H.: N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768771 (2009).CrossRefGoogle ScholarPubMed
Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., and Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 17521758 (2009).CrossRefGoogle ScholarPubMed
Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., and Ajayan, P.M.: Atomic layer of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430435 (2010).CrossRefGoogle ScholarPubMed
Tan, J.P., Md Jahim, J., Harun, S., Wu, T.Y., and Mumtaz, T.: Utilization of oil palm fronds as a sustainable carbon source in biorefineries. Int. J. Hydrogen Energy 40, 48964906 (2016).CrossRefGoogle Scholar
Suriani, A.B., Azira, A.A., Nik, S.F., and Md Nor, R., and Rusop, M.: Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater. Lett. 63, 27042706 (2009).CrossRefGoogle Scholar
Salifairus, M.J. and Rusop, M.: Synthesis of carbon nanotubes by chemical vapor deposition of camphor oil over ferrocene and aluminum isopropoxide catalyst. Adv. Mater. Res. 667, 213217 (2013).CrossRefGoogle Scholar
Salifairus, M.J., Shamsudin, M.S., Maryam, M., and Rusop, M.: Raman spectroscopy study of carbon nanotubes prepared at different deposition temperature using camphor oil as a precursor. Adv. Mater. Res. 832, 628632 (2014).CrossRefGoogle Scholar
Malaysia Palm Oil Council: The palm oil tree. Available online at: http://www.mpoc.org.my/The_Oil_Palm_Tree.aspx (accessed March 28, 2016).Google Scholar
Sime Darby Plantation: Palm oil facts and figures. Available online at: http://www.simedarby.com/upload/Palm_Oil_Facts_and_Figures.pdf (accessed March 28, 2016).Google Scholar
Kaniyoor, A. and Ramaprabhu, S.A.: A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 113 (2012).CrossRefGoogle Scholar
Gao, J., Yip, J., Zhao, J., Yakobson, B.I., and Ding, F.: Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 13, 50095015 (2011).CrossRefGoogle Scholar
Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A., and Tascon, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 1056010564 (2008).CrossRefGoogle ScholarPubMed
Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., and Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 77207721 (2006).CrossRefGoogle ScholarPubMed
Worsley, K.A., Ramesh, P., Mandal, S.K., Niyogi, S., Itkis, M.E., and Haddon, R.C.: Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 5156 (2007).CrossRefGoogle Scholar
Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., and Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 1620116206 (2008).CrossRefGoogle ScholarPubMed
Tung, V.C., Allen, M.J., Yang, Y., and Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 2526 (2008).CrossRefGoogle ScholarPubMed
Muszynski, R., Seger, B., and Kamat, P.V.: Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112, 52635266 (2008).CrossRefGoogle Scholar
Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., and Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 85358539 (2006).CrossRefGoogle ScholarPubMed
McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud'homme, R.K., and Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 43964404 (2007).CrossRefGoogle Scholar
Williams, G., Serger, B., and Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 14871491 (2008).CrossRefGoogle ScholarPubMed
Salifairus, M.J., Hamid, S.B.A., Soga, T., Alrokayan, S.A.H., Khan, H.A., and Rusop, M.: Surface topography of synthesized graphene from green carbon source using thermal chemical vapor deposition. In IEEE Student Conference on Research and Development (IEEE, Kuala Lumpur, 2015); pp. 522526.Google Scholar
Valles, C., Drummond, C., Saadaoui, H., Furtado, C.A., He, M., Roubeau, O., Ortolani, L., Monthioux, M., and Penicaud, A.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 1580215804 (2008).CrossRefGoogle ScholarPubMed
Li, X., Zhang, G., Bai, Z., Sun, X., Wang, X., Wang, E., and Dai, H.: Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538542 (2008).CrossRefGoogle ScholarPubMed
Hao, R., Qian, W., Zhang, L., and Hou, Y.: Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun. 8, 65766578 (2008).CrossRefGoogle Scholar
Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., and Chen, J.: One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 15181525 (2008).CrossRefGoogle Scholar
Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhua, Y., and Tour, J.M.: Growth of graphene from solid carbon sources. Nat. Lett. 468, 549552 (2011).CrossRefGoogle Scholar
Charlier, J.C., Ekluncd, P.C., Zhu, J., and Ferrari, A.C.: Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Topics Appl. Phys. 111, 673709 (2008).CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611622 (2010).CrossRefGoogle Scholar
Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., and Ferrari, A.C.: Production and processing of graphene and 2D crystals. Mater. Today 15, 564589 (2012).CrossRefGoogle Scholar
Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T.S., Hsieh, G., Jung, S., Bonaccorso, F., Paul, P.J., Chu, D., and Ferrari, A.C.: Inkjet-printed graphene electronics. ACS Nano 6, 29923006 (2012).CrossRefGoogle ScholarPubMed
Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D.M., and Ferrari, A.C.: Graphene mode-locked ultrafast laser. ACS Nano 4, 803810 (2009).CrossRefGoogle Scholar
Raman, C.V. and Krishnan, K.S.A.: New type of secondary radiation. Nature 121, 501502 (1928).CrossRefGoogle Scholar
Ferrari, A.C. and Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol 8, 235246 (2013).CrossRefGoogle ScholarPubMed