Skip to main content Accessibility help

Structural and ferromagnetic properties of Cu-doped GaN

  • B. Seipel (a1), R. Erni (a2), Amita Gupta (a3), C. Li (a4), F.J. Owens (a5), K.V. Rao (a6), N.D. Browning (a7) and P. Moeck (a8)...


The wurtzite polymorph of GaN was calcined with CuO in flowing nitrogen. As a result of this processing, both superconducting quantum interference device magnetometry and ferromagnetic resonance studies showed ferromagnetism in these samples at room temperature. These magnetic results are qualitatively consistent with very recent first-principle calculations [Wu et al., Appl. Phys. Lett.89, 062505 (2006)] that predict ferromagnetism in Cu-doped GaN. We focus in this paper on analyzing changes in the GaN atomic and electronic structure due to calcination with CuO using multiple analytical methods. Quantitative powder x-ray diffraction (XRD) showed changes in the lattice constants of the GaN due to the incorporation of copper (and possibly oxygen). Energy-dispersive x-ray spectroscopy proved the incorporation of copper into the GaN crystal structure. Electron-gun monochromated electron energy loss spectroscopy showed CuO calcinations-induced GaN band gap changes and indicated changes in the atomic arrangements due to the calcination process. The fine structure of the N K-edge showed differences in the peak ratios with respect to higher nominal CuO contents, corresponding to an increase in the c-lattice constant as confirmed by XRD.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).
2Zutic, I., Fabian, J., and Sarma, S. Das: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).
3Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998).
4Chambers, S.A.: Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surf. Sci. Rep. 61, 345 (2006).
5Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).
6Wu, R.Q., Peng, G.W., Liu, L., Feng, Y.P., Huang, Z.G., and Wu, Q.Y.: Cu-doped GaN: A dilute magnetic semiconductor from first-principles study. Appl. Phys. Lett. 89, 062505 (2006).
7Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M.O., Johansson, B., and Gehring, G.A.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003).
8Theodoropoulou, N., Misra, V., Philip, J., LeClair, P., Berera, G.P., Moodera, J.S., Satpati, B., and Som, T.: High-temperature ferromagnetism in Zn1− xMnxO semiconductor thin films. J. Magn. Magn. Mat. 300, 407 (2006).
9Neal, J.R., Behan, A.J., Ibrahim, R.M., Blythe, H.J., Ziese, M., Fox, A.M., and Gehring, G.A.: Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys. Rev. Lett. 96, 197208 (2006).
10Norberg, N.S., Kittilstved, K.R., Amonette, J.E., Kukkadapu, R.K., Schwartz, D.A., and Gamelin, D.R.: Synthesis of colloidal Mn2+: ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films. J. Am. Chem. Soc. 126, 9387 (2004).
11Reed, M.J., Arkun, F.E., Berkman, E.A., Elmasry, N.A., Zavada, J., Luen, M.O., Reed, M.L., and Bedair, S.M.: Effect of doping on the magnetic properties of GaMnN: Fermi level engineering. Appl. Phys. Lett. 86, 102504 (2005).
12Thaler, G.T., Overberg, M.E., Gila, B., Frazier, R., Abernathy, C.R., Pearton, S.J., Lee, J.S., Lee, S.Y., Park, Y.D., Khim, Z.G., Kim, J., and Ren, F.: Magnetic properties of n-GaMnN thin films. Appl. Phys. Lett. 80, 3964 (2002).
13Reed, M.L., El-Masry, N.A., Stadelmaier, H.H., Ritums, M.K., Reed, M.J., Parker, C.A., Roberts, J.C., and Bedair, S.M.: Room temperature ferromagnetic properties of (Ga, Mn)N. Appl. Phys. Lett. 79, 3473 (2001).
14Park, S.E., Lee, H.J., Cho, Y.C., Jeong, S.Y., Cho, C.R., and Cho, S.: Room-temperature ferromagnetism in Cr-doped GaN single crystals. Appl. Phys. Lett. 80, 4187 (2002).
15Han, S.Y., Hite, J., Thaler, G.T., Frazier, R.M., Abernathy, C.R., Pearton, S.J., Choi, H.K., Lee, W.O., Park, Y.D., Zavada, J.M., and Gwilliam, R.: Effect of Gd implantation on the structural and magnetic properties of GaN and AlN. Appl. Phys. Lett. 88, 042102 (2006).
16Sharma, P., Gupta, A., Owens, F.J., Inoue, A., and Rao, K.V.: Room temperature spintronic material—Mn-doped ZnO revisited. J. Magn. Magn. Mat. 282, 115 (2004).
17Kittilstved, K.R. and Gamelin, D.R.: Activation of high-T-c ferromagnetism in Mn2+-doped ZnO using amines. J. Am. Chem. Soc. 127, 5292 (2005).
18Park, M.S. and Min, B.I.: Ferromagnetism in ZnO co-doped with transition metals: Zn1−x and (FeCo)xO and Zn1−x(FeCu)xO. Phys. Rev. B 68, 224436 (2003).
19Kittilstved, K.R. and Gamelin, D.R.: Manipulating polar ferromagnetism in transition-metal-doped ZnO: Why manganese is different from cobalt (invited). J. Appl. Phys. 99 08M112 (2006).
20Kittilstved, K.R., Liu, W.K., and Gamelin, D.R.: Electronic structure origins of polarity-dependent high-TC ferromagnetism oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291 (2006).
21Jayakumar, O.D., Gopalakrishnan, I.K., and Kulshreshtha, S.K.: The structural and magnetization studies of Co-doped ZnO co-doped with Cu: Synthesized by co-precipitation method. J. Mater. Chem. 15, 3514 (2005).
22Radovanovic, P.V. and Gamelin, D.R.: High-temperature ferromagnetism in Ni2+-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots. Phys. Rev. Lett. 91, 157202 (2003).
23Buchholz, D.B., Chang, R.P.H., Song, J.H., and Ketterson, J.B.: Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 87, 082504 (2005).
24Gupta, A.: Novel room temperature ferromagnetic semiconductors. Ph.D. Thesis, Department of Materials Science, The Royal Institute of Technology, Stockholm, Sweden, 2004, p. 58.
25Liu, C., Yun, F., and Morkoc, H.: Ferromagnetism of ZnO and GaN: A review. J. Mater. Sci. Mater. Electron. 16, 555 (2005).
26Feng, X.B.: Electronic structures and ferromagnetism of Cu- and Mn-doped ZnO. J. Phys. Condens. Matter 16, 4251 (2004).
27Wei, M., Braddon, N., Zhi, D., Midgley, P.A., Chen, S.K., Blamire, M.G., and MacManus-Driscoll, J.L.: Room temperature ferromagnetism in bulk Mn-doped Cu2O. Appl. Phys. Lett. 86, 072514 (2005).
28Brumage, W.H., Dorman, C.F., and Quade, C.R.: Temperature-dependent paramagnetic susceptibilities of Cu2+ and Co2+ as dilute impurities in ZnO. Phys. Rev. B 6310, 104411 (2001).
29Wahl, U., Rita, E., Correia, J.G., Alves, E., and Soares, J.G.: Lattice location and stability of implanted Cu in ZnO. Phys. Rev. B 69, 012102 (2004).
30Bogusławski, P. and Bernholc, J.: Properties of wurtzite w-MnN and of w-MnN inclusions in (Ga,Mn)N. Appl. Phys. Lett. 88, 9 (2006).
31Pearton, S.J., Abernathy, C.R., Thaler, G.T., Frazier, R.M., Heo, Y.H., Ivill, M., Norton, D.P., and Park, Y.D.: Progress in wide bandgap ferromagnetic semiconductors and semiconducting oxides, in Defects and Diffusion in Semiconductors—An Annual Retrospective VII 230–232, 520 (2004).
32Pearton, S.J., Abernathy, C.R., Thaler, G.T., Frazier, R.M., Norton, D.P., Ren, F., Park, Y.D., Zavada, J.M., Buyanova, A., Chen, W.M., and Hebard, A.F.: Wide bandgap GaN-based semiconductors for spintronics. J. Phys. Condens. Matter 16, R209 (2004).
33Owens, F.J.: Ferromagnetism above room temperature in bulk sintered gallium phosphide doped with manganese. J. Phys. Chem. Solids 66, 793 (2005).
34Rodriguez-Carvajal, J.: FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France 127, 1990.
35Brink, H.A., Barfels, M.M.G., Burgner, R.P., and Edwards, B.N.: A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S). TEMs, Ultramicroscopy 96, 367 (2003).
36Erni, R., Browning, N.D., Dai, Z.R., and Bradley, J.P.: Analysis of extraterrestrial particles using monochromated electron energy-loss spectroscopy. Micron 36, 369379(2005).
37Tiemeijer, C.: Operation modes of a TEM monochromator. Inst. Phys. Conf. Ser. 161, 191 (1999).
38Kim, J.Y., Rodriguez, J.A., Hanson, J.C., Frenkel, A.I., and Lee, P.L.: Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125, 10684 (2003).
39 Database of Ionic Radii.
40Herng, T.S., Lau, S.P., Yu, S.F., Yang, H.Y., Ji, X.H., Chen, J.S., Yasui, N., and Inaba, H.: Origin of room temperature ferromagnetism in ZnO: Cu films. J. Appl. Phys. 99, 4212 (2006).
41Mattila, T. and Nieminen, R.M.: Ab initio study of oxygen point defects in GaAs, GaN, and AlN. Phys. Rev. B 54, 16676 (1996).
42Jin, Z.W., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., and Koinuma, H.: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824 (2001).
43Egerton, R.F.: Electron energy-loss spectroscopy in the electron microscope, 485 (Plenum Press, New York, 1996).
44Lazar, S., Hebert, C., and Zandbergen, H.W.: Investigation of hexagonal and cubic GaN by high-resolution electron energy-loss spectroscopy and density-functional theory. Ultramicroscopy 98, 249 (2004).
45Mizoguchi, T., Tanaka, I., Yoshioka, S., Kunisu, M., Yamamoto, T., and Ching, W.Y.: First-principles calculations of ELNES and XANES of selected wide-gap materials: Dependence on crystal structure and orientation. Phys. Rev. B 70, 045103 (2004).
46Specht, P., Ho, J.C., Xu, X., Armitage, R., Weber, E.R., Erni, R., and Kisielowski, C.: Band transitions in wurtzite GaN and InN determined by valence electron energy loss spectroscopy. Solid State Commun. 135, 340 (2005).


Structural and ferromagnetic properties of Cu-doped GaN

  • B. Seipel (a1), R. Erni (a2), Amita Gupta (a3), C. Li (a4), F.J. Owens (a5), K.V. Rao (a6), N.D. Browning (a7) and P. Moeck (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed