Skip to main content Accessibility help
×
Home

Strong visible light emission from silicon-oxycarbide nanowire arrays prepared by electron beam lithography and reactive ion etching

  • Vasileios Nikas (a1), Natasha Tabassum (a1), Brian Ford (a1), Lloyd Smith (a2), Alain E. Kaloyeros (a3) and Spyros Gallis (a3)...

Abstract

The present report presents results from the fabrication, structural, and optical characteristics of sub-100 nm thermal chemical vapor deposition-grown silicon-oxycarbide (SiC x O y ) nanowire (NW) arrays fabricated by e-beam lithography and reactive-ion-etching. The composition of SiC x O y materials follows closely the silicon-oxycarbide stoichiometry [SiC x O2(1−x), (0 < x < 1)] as observed by compositional and structural analysis. The corresponding structural and bonding evolution of SiC x O y are well-correlated with changes in their optical properties, as demonstrated by the linear dependence of their optical gap and refractive index with [Si–C]/[Si–O] bond–area ratio. By virtue of these advantages, properly tailored SiC x O y NWs were fabricated, exhibiting strong room-temperature visible photoluminescence (PL) through engineering of [Si–C]/[Si–O] bonds. The current studies focused on the thermal-oxidation and excitation intensity behavior of SiC x O y NWs revealed their very good stability, as their luminescence characteristics remain unchanged upon annealing in oxygen ambient (250 °C), while the PL intensity dependence on the excitation power-density exhibited a linear increase up to ∼800 W/cm2.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: sgalis@sunypoly.edu

References

Hide All
1. Grill, A., Gates, S.M., Ryan, T.E., Nguyen, S.V., and Priyadarshini, D.: Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art. Appl. Phys. Rev. 1, 011306 (2014).
2. King, S.W.: Dielectric barrier, etch stop, and metal capping materials for state of the art and beyond metal interconnects. ECS J. Solid State Sci. Technol. 4, N3029 (2015).
3. Gallis, S., Nikas, V., Suhag, H., Huang, M., and Kaloyeros, A.E.: White light emission from amorphous silicon oxycarbide (a-SiCxOy) thin films: Role of composition and post-deposition annealing. Appl. Phys. Lett. 97, 081905 (2010).
4. Vasin, A.V.: Structural and luminescent properties of carbonized silicon oxide thin layers. In Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting Engineering Materials, Nazarov, A., Balestra, F., Valeriya, K., Flandre, D., eds. (Springer: Heidelberg, Germany, 2014), p. 297.
5. Tamayo, A., Rubio, J., Rubio, F., Oteo, J.L., and Riedel, R.: Texture and micro-nanostructure of porous silicon oxycarbide glasses prepared from hybrid materials aged in different solvents. J. Eur. Ceram. Soc. 31, 1791 (2011).
6. Kim, Y.W., Kim, S.H., and Park, C.B.: Processing of closed-cell silicon oxycarbide foams from a preceramic polymer. J. Mater. Sci. 39, 5647 (2004).
7. Nghiem, Q.D., Cho, S.J., and Kim, D-P.: Synthesis of heat-resistant mesoporous SiOC ceramic and its hydrogen adsorption. J. Mater. Chem. 16, 558 (2006).
8. Karakuscu, A., Ponzoni, A., Aravind, P.R., Sberveglieri, G., and Soraru, G.D.: Gas sensing behavior of mesoporous SiOC glasses. J. Am. Ceram. Soc. 96, 2366 (2013).
9. Liu, X., Xie, K., Zheng, C.M., Wang, J., and Jing, Z.Q.: Si-O-C materials prepared with a sol-gel method for negative electrode of lithium battery. J. Power Sources 214, 119 (2012).
10. Bhandavat, R. and Singh, G.: Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide–carbon nanotube shell/core composites. J. Phys. Chem. C 117, 11899 (2013).
11. Zhuo, R., Colombo, P., Pantano, C., and Vogler, E.A.: Silicon oxycarbide glasses for blood-contact applications. Acta Biomater. 1, 583 (2005).
12. Liang, D. and Bowers, J.E.: Recent progress in lasers on silicon. Nat. Photonics 4, 511 (2010).
13. Fang, Z., Chen, Q.Y., and Zhao, C.Z.: A review of recent progress in lasers on silicon. Opt. Laser Technol. 46, 103 (2013).
14. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., and Schubert, E.F.: High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294 (1997).
15. Guichard, A.R., Kekatpure, R.D., Brongersma, M.L., and Kamins, T.I.: Temperature-dependent Auger recombination dynamics in luminescent silicon nanowires. Phys. Rev. B 78, 235422 (2008).
16. He, Y., Fan, C., and Lee, S.T.: Silicon nanostructures for bioapplications. Nano Today 5, 282 (2010).
17. Zhao, Y., Riemersma, C., Pietra, F., Koole, R., Donegá, C.M., and Meijerink, A.: High-temperature luminescence quenching of colloidal quantum dots. ACS Nano 6, 9058 (2012).
18. Tayagaki, T., Fukatsu, S., and Kanemitsu, Y.: Photoluminescence dynamics and reduced Auger recombination in Si1−xGex/Si superlattices under high-density photoexcitation. Phys. Rev. B 79, 041301 (2009).
19. Gallis, S., Nikas, V., Eisenbraun, E., Huang, M., and Kaloyeros, A.E.: On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide. J. Mater. Res. 24, 2561 (2009).
20. Gallis, S., Nikas, V., Huang, M., Eisenbraun, E., and Kaloyeros, A.E.: Comparative study of the effects of thermal treatment on the optical properties of hydrogenated amorphous silicon-oxycarbide. J. Appl. Phys. 102, 024302 (2007).
21. Kroll, P.: Searching insight into the atomistic structure of SiCO ceramics. J. Mater. Chem. 20, 10528 (2010).
22. Bréquel, H., Parmentier, J., Walter, S., Badheka, R., Trimmel, G., Masse, S., Latournerie, J., Dempsey, P., Turquat, C., Chomel, A.D., Le Neindre-Prum, L., Jayasooriya, U.A., Hourlier, D., Kleebe, H-J., Soraru, G.D., Enzo, S., and Babonneau, F.: Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem. Mater. 16, 2585 (2004).
23. Wolfe, D.M., Hinds, B.J., Wang, F., Lucovsky, G., Ward, B.L., Xu, M., Nemanich, R.J., and Maher, D.M.: Thermochemical stability of silicon–oxygen–carbon alloy thin films: A model system for chemical and structural relaxation at SiC–SiO2 interfaces. J. Vac. Sci. Technol., A 17, 2170 (1999).
24. Tolstoy, V.P., Chernyshova, I.V., and Skryshevsky, V.A.: Chapter 5. In Handbook of Infrared Spectroscopy of Ultrathin Films, Wiley: New York, 2003.
25. Kim, Y.H., Hwang, M.S., Kim, H.J., Kim, J.Y., and Lee, Y.: Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films. J. Appl. Phys. 90, 3367 (2001).
26. Lehmann, A., Schumann, L., and Hubner, K.: Optical phonons in amorphous silicon oxides. I. Calculation of the Density of States and Interpretation of Lo-To Splittings of Amorphous SiO2 . Phys. Status Solidi B 117, 689 (1983).
27. Nikas, V., Gallis, S., Huang, M., Kaloyeros, A.E., Nguyen, A.P.D., Stesmans, A., and Afanas'ev, V.V.: The origin of white luminescence from silicon oxycarbide thin films. Appl. Phys. Lett. 104, 061906 (2014).
28. Sun, C.Q.: A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72, 6 (1998).
29. Skuja, L.: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 239, 16 (1998).
30. Tessler, L.R. and Solomon, I.: Photoluminescence of tetrahedrally coordinated a-Si1−xCx:H. Phys. Rev. B 52, 10962 (1995).
31. Chollon, G.: Oxidation behaviour of ceramic fibres from the Si–C–N–O system and related sub-systems. J. Eur. Ceram. Soc. 20, 1959 (2000).
32. Grieshaber, W., Schubert, E.F., Goepfert, I.D., Karlicek, R.F. Jr., Schurman, M.J., and Tran, C.: Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices. J. Appl. Phys. 80, 4615 (1996).
33. Kovalev, D., Diener, J., Heckler, H., Polisski, G., Kunzner, N., and Koch, F.: Optical absorption cross sections of Si nanocrystals. Phys. Rev. B 61, 4485 (2000).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed